

HADRON 2021 Mexico City (online conference), July 28, 2021

A new theoretical determination of $R_{\tau/P} \equiv \frac{\Gamma(\tau \to P\nu_{\tau}[\gamma])}{\Gamma(P \to \mu\nu_{\mu}[\gamma])} \text{ (P = }\pi\text{,K)}$

Ignasi Rosell Universidad CEU Cardenal Herrera Valencia (Spain)

In collaboration with: M.A. Arroyo-Ureña (CINVESTAV, IPN, Mexico) G. Hernández-Tomé (CINVESTAV, IPN, Mexico) G. López-Castro (CINVESTAV, IPN, Mexico) P. Roig (CINVESTAV, IPN, Mexico)

arXiv: 2107.04603

OUTLINE

1) Motivation

- 2) $P \rightarrow \mu \nu_{\mu} [\gamma]$ (P= π ,K)
- 3) $\tau \rightarrow P \nu_{\tau} [\gamma]$ (P= π ,K)
- 4) Calculation of $R_{\tau/P} \equiv \frac{\Gamma(\tau \to P\nu_{\tau}[\gamma])}{\Gamma(P \to \mu\nu_{\mu}[\gamma])}$
- 5) Results
- 6) Applications
- 7) Conclusions

1. Motivation

- ✓ Lepton Universality (LU) as a basic tenet of the Standard Model (SM).
 - ✓ A few anomalies observed in semileptonic B meson decays*.
- ✓ We aim to test muon-tau lepton universality through the ratio ($P = \pi$, K)**:

$$R_{\tau/P} \equiv \frac{\Gamma(\tau \to P\nu_{\tau}[\gamma])}{\Gamma(P \to \mu\nu_{\mu}[\gamma])} = \left|\frac{g_{\tau}}{g_{\mu}}\right|_{P}^{2} R_{\tau/P}^{(0)} \left(1 + \delta R_{\tau/P}\right)$$

• $g_{\tau} = g_{\mu}$ according to LU.

$$\checkmark \quad \mathsf{R}_{\tau/\mathsf{P}}^{(0)} \text{ is the LO result } R_{\tau/P}^{(0)} = \frac{1}{2} \frac{M_{\tau}^3}{m_{\mu}^2 m_P} \frac{(1 - m_P^2/M_{\tau}^2)^2}{(1 - m_{\mu}^2/m_P^2)^2} \ .$$

- \checkmark $\delta R_{\tau/P}$ encodes the radiative corrections.
- ✓ $\delta R_{\tau/P}$ was calculated by Decker & Finkemeier (DF'95)***:
 - ✓ $\delta R_{\tau/\pi} = (0.16 \pm 0.14)\%$ and $\delta R_{\tau/K} = (0.90 \pm 0.22)\%$.
- Important phenomenological and theoretical reasons to address the analysis again.

* Albrecht et al.'21

** Marciano & Sirlin'93

*** Decker & Finkemeier'95

1. Motivation

Phenomenological disagreement in LU tests:

✓ Using
$$\frac{\Gamma(\tau \to P\nu_{\tau}[\gamma])}{\Gamma(P \to \mu\nu_{\mu}[\gamma])}$$
 and DF'95*, HFLAV** reported:

- ✓ $|g_{\tau}/g_{\mu}|_{\pi} = 0.9958 \pm 0.0026$ (at 1.6 σ of LU)
- ✓ $|g_{\tau}/g_{\mu}|_{K} = 0.9879 \pm 0.0063$ (at 1.9 σ of LU)
- ✓ Using $\frac{\Gamma(\tau \to e\bar{\nu}_e \nu_\tau[\gamma])}{\Gamma(\mu \to e\bar{\nu}_e \nu_\mu[\gamma])}$, HFLAV** reported:

✓
$$|g_{\tau}/g_{\mu}| = 1.0010 \pm 0.0014$$
 (at 0.7 σ of LU)

✓ Using
$$\frac{\Gamma(W \to \tau \nu_{\tau})}{\Gamma(W \to \mu \nu_{\mu})}$$
, CMS and ATLAS*** and reported:

✓ $|g_{\tau}/g_{\mu}| = 0.995 \pm 0.006$ (at 0.8 σ of LU)

- ✓ Theoretical issues within DF'95*:
 - Hadronic form factors do not satisfy the correct QCD shortdistance behavior, violate unitarity, analicity and the chiral limit at leading non-trivial orders.
 - A cutoff to regulate the loop integrals (separating long- and short-distance corrections)
 - Underestimated uncertainties (purely ChPT size).

- ✓ By-products of the project:
 - ✓ Radiative corrections in $\Gamma(\tau \rightarrow Pv_{\tau}[\gamma])$.
 - ✓ CKM unitarity test via $\Gamma(\tau \to K\nu_{\tau}[\gamma])$ or via the ratio $\Gamma(\tau \to K\nu_{\tau}[\gamma]) / \Gamma(\tau \to \pi\nu_{\tau}[\gamma])$.
 - Constraints on possible non-standard interactions in $\Gamma(\tau \rightarrow Pv_{\tau}[\gamma])^{-1}$.

* Decker & Finkemeier'95 ** HFLAV'21 *** CMS'21, ATLAS'21

- ^ Cirigliano et al.'10 '19
- González-Alonso & Martín Calamich '16
 Gonzàlez-Solís et al. '20

2. $P \rightarrow \mu \nu_{\mu} [\gamma]$ (P= π ,K)

Calculated unambigously within the Standard Model (Chiral Perturbation Theory, ChPT*). \checkmark

Notation by Marciano & Sirlin^{**} and numbers by Cirigliano & IR^{***} (D=d,s for π ,K): \checkmark

The only model-dependence is the determination of the counterterms in $c_1^{(P)}$ and $c_3^{(P)}$: \checkmark

Large-N_c expansion of QCD: ChPT is enlarged by including the lightest multiplets of spin-one resonances such that the relevant Green functions are well-behaved at high energies[†].

* Weinberg'79

*** Cirigliano & IR'07

* Gasser & Leutwyler'84 '85 [^] Kinoshita'59

** Marciano & Sirlin'93

[†] Ecker et al.'89 [†] Cirigliano et al.'06

3. $\tau \rightarrow P \nu_{\tau} [\gamma]$ (P= π ,K)

- ✓ Calculated within an effective approach encoding the hadronization:
 - Large-N_C expansion of QCD: ChPT is enlarged by including the lightest multiplets of spin-one resonances such that the relevant Green functions are well-behaved at high energies*.

Real-photon structure-dependent (rSD) contributions from Guo & Roig'10***.

✓ Virtual-photon structure-dependent (vSD) contributions not calculated in the literature.

- * Ecker et al.'89
- * Cirigliano et al.'06
- ** Kinoshita'59

*** Guo & Roig'10

3. $\tau \rightarrow P \nu_{\tau} [\gamma]$ (P= π ,K)

✓ Virtual-photon structure-dependent contribution (vSD):

$$i\mathcal{M}[\tau \to P\nu_{\tau}]|_{\rm SD} = iG_F V_{uD} e^2 \int \!\!\frac{\mathrm{d}^d k}{(2\pi)^d} \frac{\ell^{\mu\nu}}{k^2 [(p_{\tau} + k)^2 - M_{\tau}^2]} \Big[i\epsilon_{\mu\nu\lambda\rho} k^{\lambda} p^{\rho} F_V^P(W^2, k^2) + F_A^P(W^2, k^2) \lambda_{1\mu\nu} + 2B(k^2) \lambda_{2\mu\nu} \Big] + \frac{i}{2} \left[i\epsilon_{\mu\nu\lambda\rho} k^{\lambda} p^{\rho} F_V^P(W^2, k^2) + F_A^P(W^2, k^2) \lambda_{1\mu\nu} + 2B(k^2) \lambda_{2\mu\nu} \right] + \frac{i}{2} \left[i\epsilon_{\mu\nu\lambda\rho} k^{\lambda} p^{\rho} F_V^P(W^2, k^2) + F_A^P(W^2, k^2) \lambda_{1\mu\nu} + 2B(k^2) \lambda_{2\mu\nu} \right] + \frac{i}{2} \left[i\epsilon_{\mu\nu\lambda\rho} k^{\lambda} p^{\rho} F_V^P(W^2, k^2) + F_A^P(W^2, k^2) \lambda_{1\mu\nu} + 2B(k^2) \lambda_{2\mu\nu} \right] + \frac{i}{2} \left[i\epsilon_{\mu\nu\lambda\rho} k^{\lambda} p^{\rho} F_V^P(W^2, k^2) + F_A^P(W^2, k^2) \lambda_{1\mu\nu} + 2B(k^2) \lambda_{2\mu\nu} \right] + \frac{i}{2} \left[i\epsilon_{\mu\nu\lambda\rho} k^{\lambda} p^{\rho} F_V^P(W^2, k^2) + F_A^P(W^2, k^2) \lambda_{1\mu\nu} + 2B(k^2) \lambda_{2\mu\nu} \right] + \frac{i}{2} \left[i\epsilon_{\mu\nu\lambda\rho} k^{\lambda} p^{\rho} F_V^P(W^2, k^2) + F_A^P(W^2, k^2) \lambda_{1\mu\nu} + 2B(k^2) \lambda_{2\mu\nu} \right] + \frac{i}{2} \left[i\epsilon_{\mu\nu\lambda\rho} k^{\lambda} p^{\rho} F_V^P(W^2, k^2) + F_A^P(W^2, k^2) \lambda_{1\mu\nu} + 2B(k^2) \lambda_{2\mu\nu} \right] + \frac{i}{2} \left[i\epsilon_{\mu\nu\lambda\rho} k^{\lambda} p^{\rho} F_V^P(W^2, k^2) + F_A^P(W^2, k^2) \lambda_{1\mu\nu} + 2B(k^2) \lambda_{2\mu\nu} \right] + \frac{i}{2} \left[i\epsilon_{\mu\nu\lambda\rho} k^{\lambda} p^{\rho} F_V^P(W^2, k^2) + F_A^P(W^2, k^2) \lambda_{1\mu\nu} + 2B(k^2) \lambda_{2\mu\nu} \right] + \frac{i}{2} \left[i\epsilon_{\mu\nu\lambda\rho} k^{\lambda} p^{\rho} F_V^P(W^2, k^2) + F_A^P(W^2, k^2) \lambda_{1\mu\nu} + 2B(k^2) \lambda_{2\mu\nu} \right] + \frac{i}{2} \left[i\epsilon_{\mu\nu} k^{\lambda} p^{\rho} F_V^P(W^2, k^2) + F_A^P(W^2, k^2) \lambda_{1\mu\nu} + 2B(k^2) \lambda_{2\mu\nu} \right] + \frac{i}{2} \left[i\epsilon_{\mu\nu} k^{\lambda} p^{\rho} F_V^P(W^2, k^2) + F_A^P(W^2, k^2) \lambda_{1\mu\nu} + 2B(k^2) \lambda_{2\mu\nu} \right] + \frac{i}{2} \left[i\epsilon_{\mu\nu} k^{\lambda} p^{\rho} F_V^P(W^2, k^2) + F_A^P(W^2, k^2) \lambda_{2\mu\nu} \right] + \frac{i}{2} \left[i\epsilon_{\mu\nu} k^{\lambda} p^{\rho} F_V^P(W^2, k^2) + F_A^P(W^2, k^2) \lambda_{2\mu\nu} \right] + \frac{i}{2} \left[i\epsilon_{\mu\nu} k^{\lambda} p^{\rho} F_V^P(W^2, k^2) + F_A^P(W^2, k^2) \lambda_{2\mu\nu} \right] + \frac{i}{2} \left[i\epsilon_{\mu\nu} k^{\lambda} p^{\rho} F_V^P(W^2, k^2) + F_A^P(W^2, k^2) \lambda_{2\mu\nu} \right] + \frac{i}{2} \left[i\epsilon_{\mu\nu} k^{\lambda} p^{\rho} F_V^P(W^2, k^2) + F_A^P(W^2, k^2) \lambda_{2\mu\nu} \right] + \frac{i}{2} \left[i\epsilon_{\mu\nu} k^{\lambda} p^{\mu} F_V^P(W^2, k^2) + F_A^P(W^2, k^2) \lambda_{2\mu\nu} \right] + \frac{i}{2} \left[i\epsilon_{\mu\nu} k^{\lambda} p^{\mu} F_V^P(W^2, k^2) + F_A^P(W^2, k^2) \lambda_{2\mu\nu} \right] + \frac{i}{2} \left[i\epsilon_{\mu\nu} k^{\lambda} p^{\mu} F_V^P(W^2, k^2) \right] + \frac{i}{2} \left[i\epsilon_{\mu\nu} k^{\lambda} p^{\mu} F_V^P(W^2, k^2) \right] + \frac{i}{2} \left[i\epsilon_{\mu\nu} k^{\mu$$

$$\ell^{\mu\nu} = \bar{u}(q)\gamma^{\mu}(1-\gamma_{5})[(p_{\tau}'+k)+M_{\tau}]\gamma^{\nu}u(p_{\tau})$$

$$\lambda_{1\mu\nu} = [(p+k)^{2}+k^{2}-m_{P}^{2}]g_{\mu\nu}-2k_{\mu}p_{\nu}$$

$$\lambda_{2\mu\nu} = k^{2}g_{\mu\nu}-\frac{k^{2}(p+k)_{\mu}p_{\nu}}{(p+k)^{2}-m_{P}^{2}}$$

✓ Form factors from Guo & Roig'10 and Guevara et al.'13*:

$$F_V^P(W^2, k^2) = \frac{-N_C M_V^4}{24\pi^2 F_P(k^2 - M_V^2)(W^2 - M_V^2)}$$

$$F_A^P(W^2, k^2) = \frac{F_P}{2} \frac{M_A^2 - 2M_V^2 - k^2}{(M_V^2 - k^2)(M_A^2 - W^2)}$$

$$B(k^2) = \frac{F_P}{M_V^2 - k^2}$$

- Well-behaved two- and three-point Green functions.
- ✓ Chiral and U(3) limits.
- ✓ M_V and M_A large-N_C vector- and axial-vector resonance mass.

* Guo & Roig'10

* Guevara et al.'13

4. Calculation of $R_{\tau/P} = R_{\tau/P}^{(0)} (1 + \delta R_{\tau/P}) = R_{\tau/P}^{(0)} (1 + \delta_{\tau P} - \delta_{P\mu})$

1. Structure-independent contribution (point-like approximation): SI.

$$\checkmark \quad \text{We confirm the results by DF'95*.} \qquad \delta R_{\tau/P} \Big|_{\text{SI}} = \frac{\alpha}{2\pi} \left\{ \frac{3}{2} \log \frac{M_{\tau}^2 m_P^2}{m_{\mu}^4} + \frac{3}{2} + g \left(\frac{m_P^2}{M_{\tau}^2} \right) - f \left(\frac{m_{\mu}^2}{m_P^2} \right) \right\}$$

$$\begin{aligned} f(x) &= 2\left(\frac{1+x}{1-x}\log x - 2\right)\log(1-x) - \frac{x(8-5x)}{2(1-x)^2}\log x + 4\frac{1+x}{1-x}\operatorname{Li}_2(x) - \frac{x}{1-x}\left(\frac{3}{2} + \frac{4}{3}\pi^2\right) \\ g(x) &= 2\left(\frac{1+x}{1-x}\log x - 2\right)\log(1-x) - \frac{x(2-5x)}{2(1-x)^2}\log x + 4\frac{1+x}{1-x}\operatorname{Li}_2(x) + \frac{x}{1-x}\left(\frac{3}{2} - \frac{4}{3}\pi^2\right) \end{aligned}$$

$$\delta R_{\tau/\pi}|_{SI}$$
 = 1.05% and $\delta R_{\tau/K}|_{SI}$ = 1.67%

- 2. Real-photon structure-dependent contribution: rSD.
 - ✓ $\delta_{P\mu}|_{rSD}$ from Cirigliano & IR'07**: $\delta_{\pi\mu}|_{rSD}$ = -1.3 · 10⁻⁸ and $\delta_{K\mu}|_{rSD}$ = -1.7 · 10⁻⁵.
 - ✓ $\delta_{\tau P}|_{rSD}$ from Guo & Roig'10***: $\delta_{\tau \pi}|_{rSD} = 0.15\%$ and $\delta_{\tau K}|_{rSD} = (0.18 \pm 0.05)\%$.

 $\delta R_{\tau/\pi}|_{rSD}$ = 0.15% and $\delta R_{\tau/K}|_{rSD}$ = (0.18 ± 0.15)%

* Decker & Finkemeier'95 ** Cirigliano & IR'07

*** Guo & Roig'10

4. Calculation of $R_{\tau/P} = R_{\tau/P}^{(0)} (1 + \delta R_{\tau/P}) = R_{\tau/P}^{(0)} (1 + \delta_{\tau P} - \delta_{P\mu})$

- 3. Virtual-photon structure-dependent contribution: vSD.
 - ✓ $\delta_{P\mu}|_{vSD}$ from Cirigliano & IR'07*: $\delta_{\pi\mu}|_{vSD}$ = (0.54 ± 0.12)% and $\delta_{K\mu}|_{vSD}$ = (0.43 ± 0.12)%.
 - ✓ $\delta_{\tau P}|_{vSD}$, new calculation: $\delta_{\tau \pi}|_{vSD}$ = (-0.48 ± 0.56)% and $\delta_{\tau K}|_{vSD}$ =(-0.45 ± 0.57)%.

 $\delta R_{\tau/\pi}|_{vSD}$ = (-1.02 ± 0.57)% and $\delta R_{\tau/K}|_{vSD}$ = (-0.88 ± 0.58)%

- ✓ Uncertainties dominated by $\delta_{\tau P}|_{vSD}$:
 - P decays within ChPT [counterterms can be determined by matching ChPT with the resonance effective approach at higher energies], whereas τ decays within resonance effective approach [no matching to determine the counterterms].
 - ✓ Estimation of the model-dependence by comparing our results with a less general scenario where only well-behaved two-point Green functions and a reduced resonance Lagrangian is used: ±0.22% and ±0.24% for the pion and the kaon case.
 - ✓ Estimation of the counterterms by considering the running between 0.5 and 1.0 GeV: $\pm 0.52\%$.

5. Results

Contribution	$\delta R_{\tau/\pi}$	$\delta R_{\tau/K}$	Ref.
SI	+1.05%	+1.67%	*
rSD	+0.15%	$+(0.18\pm0.05)\%$	**
vSD	$-(1.02\pm0.57)\%$	$-(0.88\pm0.58)\%$	new
Total	$+(0.18\pm0.57)\%$	$+(0.97\pm0.58)\%$	new

- ✓ Central values agree remarkably with DF'95: $\delta R_{\tau/\pi} = (0.16 \pm 0.14)\%$ and $\delta R_{\tau/K} = (0.90 \pm 0.22)\%$, **but** in that work:
 - problematic hadronization: form factors do not satisfy the correct QCD short-distance behavior, violate unitarity, analicity and the chiral limit at leading non-trivial orders.
 - ✓ a cutoff to regulate the loop integrals.
 - underestimated uncertainties (purely ChPT size).

* Decker & Finkemeier'95

** Cirigliano & IR'07

** Guo & Roig'10

6. Application I: lepton universality test

 \checkmark π case: at 0.9 σ of LU vs. 1.6 σ of LU in HFLAV'21* using DF'95**

✓ K case: at 1.8σ of LU vs. 1.9σ of LU in HFLAV'21* using DF'95**

* HFLAV'21 ** Decker & Finkemeier'95

6. Application II: Radiative corrections in $\Gamma(\tau \rightarrow Pv_{\tau}[\gamma])$

$$\Gamma(\tau \to P\nu_{\tau}[\gamma]) = \frac{G_F^2 |V_{uD}|^2 F_P^2}{8\pi} M_{\tau}^3 \left(1 - \frac{m_P^2}{M_{\tau}^2}\right)^2 S_{ew} (1 + \delta_{\tau P})$$

$$\checkmark \quad \delta_{\tau P} \text{ includes SI and SD radiative corrections.}$$

$$\delta_{\tau P} = \frac{\alpha}{2\pi} \left(g\left(\frac{m_P^2}{M_{\tau}^2}\right) + \frac{19}{4} - \frac{2\pi^2}{3} - 3\log\frac{m_P}{M_{\tau}}\right) + \delta_{\tau P}|_{\rm rSD} + \delta_{\tau P}|_{\rm vSD} = \begin{cases} \delta_{\tau \pi} = (-0.24 \pm 0.56)\%\\ \delta_{\tau K} = (-0.15 \pm 0.57)\% \end{cases}$$

6. Application III: CKM unitarity test in the ratio $\Gamma(\tau \rightarrow K\nu_{\tau}[\gamma]) / \Gamma(\tau \rightarrow \pi\nu_{\tau}[\gamma])$

 ✓ 2.1σ away from CKM unitarity, considering |V_{ud} |=0.97373±0.00031**.

* FLAG'20 ** Hardy & Towner'20

6. Application IV: CKM unitarity test in $\Gamma(\tau \rightarrow Kv_{\tau}[\gamma])$

* FLAG'20 ** Marciano & Sirlin'93 *** Hardy & Towner'20

6. Application V: constraining non-standard interactions in $\Gamma(\tau \rightarrow Pv_{\tau}[\gamma])$

- To be compared with $\Delta^{\tau\pi} = -(0.15 \pm 0.67) \cdot 10^{-2}$ of Cirigliano et al.'19[^].
- To be compared with $\Delta^{\tau\pi} = -(0.12 \pm 0.68) \cdot 10^{-2}$ and $\Delta^{\tau K} = (-0.41 \pm 0.93) \cdot 10^{-2}$ of González-Solís et al.'20[†].

* Hardy & Towner'20 ** FLAG'20

*** Marciano & Sirlin'93

^ Cirigliano et al.'19 [†] Gonzàlez-Solís et al. '20

7. Conclusions

The observable and our result:

$$R_{\tau/P} \equiv \frac{\Gamma(\tau \to P\nu_{\tau}[\gamma])}{\Gamma(P \to \mu\nu_{\mu}[\gamma])} = \left| \frac{g_{\tau}}{g_{\mu}} \right|_{P}^{2} R_{\tau/P}^{(0)} \left(1 + \delta R_{\tau/P} \right) \quad \longrightarrow \quad \left\{ \begin{array}{c} \delta R_{\tau/\pi} = (0.18 \pm 0.57)\% \\ \delta R_{\tau/K} = (0.97 \pm 0.58)\% \end{array} \right\}$$

- Framework: ChPT for π decays and a resonance extension of ChPT for τ decays.
- Consistent with DF'95*, but with more robust assumptions and yielding a reliable uncertainty.
- ✓ Applications:
 - ✓ $|g_{\tau}/g_{\mu}|_{P}$ at 0.9 σ (π) and 1.8 σ (K) of LU, reducing HFLAV'21** disagreement with LU.
 - ✓ Theoretical determination of radiative corrections in $\Gamma(\tau \to Pv_{\tau}[\gamma])$.
 - ✓ CKM unitarity in $\Gamma(\tau \rightarrow K\nu_{\tau}[\gamma])/\Gamma(\tau \rightarrow \pi\nu_{\tau}[\gamma])$: $|V_{us}/V_{ud}| = 0.2288 \pm 0.0020$, at 2.1 σ from unitarity.
 - ✓ CKM unitarity in $\Gamma(\tau \rightarrow Kv_{\tau}[\gamma])$: $|V_{us}| = 0.2220 \pm 0.0018$, at 2.6 σ from unitarity.
 - ✓ Constraining non-standard interactions in $\Gamma(\tau \rightarrow \mathsf{Pv}_{\tau}[\gamma])$: update of $\Delta^{\tau\mathsf{P}}$.

* Decker & Finkemeier'95 ** HFLAV'21