

Recent results of charmonium decays at BESIII

Guangrui LIAO (liaogr@gxnu.edu.cn)

GuangXi Normal University

(On behalf of BESIII Collaboration)

Hadron2021, 26th to 31st of July 2021, Mexico City

9TH INTERNATIONAL CONFERENCE ON HADRON SPECTROSCOPY AND STRUCTURE

Charmonium spectrum

➤Charmonium states located in the transition region between perturbative QCD and nonperturbative QCD.

➤ Various theoretical models make predictions

for charmonium decays.

New observed charmonium decays can provide

more new information for theory.

Recent results of charmonium decays at BESIII

- $\checkmark \psi_2(3823)$
 - $\gamma \chi_{c0,1,2}$
 - $\pi^+\pi^-J/\psi$
 - $\pi^0\pi^0 J/$
 - $\pi^0 J/\psi$
 - $\eta J/\psi$

√ ψ(3686)

- $\overline{\Sigma}^0 \Lambda + c.c.$
- K_S^0 +anything
- $\Sigma^+ \overline{\Sigma}^-$
- $\checkmark \chi_{cJ(J=0,1,2)}$
 - *ΛΛ*̄

•
$$nK_S^0\bar{\Lambda} + c.c.$$

√ J/ψ

•
$$\Sigma^+ \overline{\Sigma}^-$$

ηηη'

New decay modes of $\psi_2(3823)$

3.88

3.88

Background Sideband

3.84

Channel	$N^{\psi_2(3823)}$	$\frac{\mathcal{B}(\psi_2(3823) \to \cdots)}{\mathcal{B}(\psi_2(3823) \to \gamma \chi_{c1})}$
$\gamma \chi_{c1}$	63.1 ± 8.5	
$\gamma \chi_{c2}$	$8.8^{+4.3}_{-3.4}$	$0.28^{+0.14}_{-0.11} \pm 0.02$
$\pi^+\pi^- J/\psi$	<21.0	< 0.06
$\pi^0 \pi^0 J/\psi$	< 10.0	< 0.11
$\eta J/\psi$	< 9.8	< 0.14
$\pi^0 J/\psi$	< 5.6	< 0.03
$\gamma \chi_{c0}$	< 6.3	< 0.24

PRD103, L091102 (2021)

- ✓ $\psi_2(3823) \rightarrow \gamma \chi_{c1}$:confirms the previous observation^[1,2] with 11.8 σ .
- ✓ $\psi_2(3823) \rightarrow \gamma \chi_{c2}$: found for the first time with 3.2 σ
- $\checkmark e^+e^- \rightarrow \pi^0 \pi^0 \psi_2(3823)$ is found with 4.3 σ .
 - No significant $e^+e^- \rightarrow \pi^+\pi^- \psi_3(3842)$ signals in all channels.

Consistent with the theoretical predictions^[3,4].

[1] Phys. Rev. Lett.111, 032001 (2013). [2] Phys. Rev. Lett.115, 011803 (2015) [3]Phys. Rev. D 55, 4001 (1997). [4] Phys. Rev. Lett. 89, 162002 (2002).

Measurements of the branching fractions of $\psi(3686) \rightarrow \overline{\Sigma}^0 \Lambda + c. c. \text{ and } \chi_{cJ(J=0,1,2)} \rightarrow \Lambda \overline{\Lambda}$

- \checkmark The BF of $\psi(3686) \rightarrow \overline{\Sigma}^0 \Lambda + c.c.$
 - CLEO^[5]:

 $(12.3\pm2.4)\times10^{-6}$

• Theoretical prediction^[6]:

 $(4.0\pm2.3)\times10^{-6}$

• This work:

 $(1.60\pm0.31\pm0.13\pm0.58)\times10^{-6}$

Due to the uncertainty of interference with continuum process.

[5]Phys. Rev. D 96, 092004 (2017).[6]Int. J. Mod.Phys. A 30, 1550148 (2015)

Measurements of the branching fractions of $\psi(3686) \rightarrow \overline{\Sigma}^0 \Lambda + c. c. \text{ and } \chi_{cJ(J=0,1,2)} \rightarrow \Lambda \overline{\Lambda}$

- ✓ The BFs of $\chi_{cJ} \rightarrow \Lambda \overline{\Lambda}$ are measured with improved precision, and they are consistent with previous results^[7].
- ✓ These results are not consistent with the theoretical predictions^[8-10], e.g., (1.19~1.51)×10⁻⁴ for χ_{c0}

			$\mathcal{B}(\psi(3686) \to \gamma \chi_{cJ})$	$\mathcal{B}(\chi_{cJ} \to \Lambda \bar{\Lambda})(\times$	10 ⁻⁴)
Mode	$N_{\chi_{cJ}}$	ϵ	$\times \mathcal{B}(\chi_{cJ} \to \Lambda \bar{\Lambda})(10^{-5})$	This work	PDG
χ _c 0	1486 ± 42	22.80%	$3.56 \pm 0.10 \pm 0.10$	$3.64 \pm 0.10 \pm 0.10 \pm 0.07$	3.27 ± 0.24
Xcl	528 ± 24	22.61%	$1.28 \pm 0.06 \pm 0.06$	$1.31 \pm 0.06 \pm 0.06 \pm 0.03$	1.14 ± 0.11
χ _{c2}	670 ± 27	20.16%	$1.82 \pm 0.08 \pm 0.17$	$1.91 \pm 0.08 \pm 0.17 \pm 0.04$	1.84 ± 0.15
[7] Phys	. Rev. D 87,0320	07 (2013).			
[8] Eur. Phys. J. C 14, 643 (2000).		Duet	a the up containty of		
[9] Eur. Phys. J. A 23, 129 (2005).		Due t	o the uncertainty of	6	
[10] J. Phys. G 38, 035007 (2011).			$\mathrm{BF}(\psi$	$\gamma(3686) \rightarrow \gamma \chi_{cJ}).$	O

Measurements of $\psi(3686) \rightarrow K_S^0$ +anything

arXiv:2106.08766

- ✓ Measurements of the BFs of inclusive $\psi(3686)$ decays can guide the search for new exclusive decay modes.
- ✓ The BF of $\psi(3686) \rightarrow K_S^0$ +anything is measured to be $(16.04\pm0.29\pm0.90)\%$ for the first time. The sum of all the BFs of $\psi(3686)$ decays to exclusive K_S^0 final states is ~ 5.95% as reported in PDG^[11].
- Some undiscovered exclusive channels for $\psi(3686)$ decay to final states associated with K_S^0 .

Measurement of branching fractions of J/ ψ and ψ (3686) decays to Σ^+ and $\overline{\Sigma}^-$

- ✓ The precision of the BF of J/ ψ → $\Sigma^+ \overline{\Sigma}^-$ is poor^[12], (1.50±0.10±0.22) ×10⁻³.
- ✓ The BFs of them are in agreement with the previous measurement ^[12, 13].
- ✓ The precision of J/ψ is improved by a factor of 7.

arXiv:2107.02977

	Channel	Branching fraction(10-4)	$BF(\psi(3686)) / BF(J/\psi)$
	$\psi(3686) \longrightarrow \Sigma^+ \overline{\Sigma}^-$	$2.52 \pm 0.04 \pm 0.10$	(22 8+1 2)%
	$J/\psi \longrightarrow \Sigma^+ \overline{\Sigma}^-$	10.61±0.04±0.38	(23.8±1.3)%
			violates the
[12]Phys. Rev. D 78, 092005 (2008).			"12% rule"
[1]	3]Phys. Rev. D 96, 0		

Observation of the decays $\chi_{cJ} \rightarrow nK_S^0\overline{\Lambda} + c.c.$

arXiv:2106.13442

✓ χ_{cJ} → nK_S⁰Λ̄ + c.c. is observed for the first time.
✓ Check with χ_{cJ} → pK⁻Λ̄ + c.c^{·[14]}, and no obvious isospin violation is observed.

^[14] Phys. Rev. D 87, 012007(2013)

Observation of $\eta_c \rightarrow \eta \eta \eta'$ **in** J/ $\psi \rightarrow \gamma \eta \eta \eta'$

PRD103, 012009 (2021)

 ✓ A possible pseudoscalar glueball candidate, the X(2370), is observed in experiment^[15,16].

[17] Phys. Rev. D 87, 054036 (2013).

[18] Eur. Phys. J. A 54, 139 (2018).

10

Summary

- ✓ The largest data samples of J/ ψ and ψ (3686) collected by BESIII provide a wonderful opportunity not only to search for rare decays, but also to study the unknown decays of charmonium.
- ✓ 6 analyses are presented:
 - New decay modes of $\psi_2(3823)$
 - $\psi(3686) \rightarrow \overline{\Sigma}{}^0 \Lambda + c.c. \text{ and } \chi_{cJ(J=0,1,2)} \rightarrow \Lambda \overline{\Lambda}$
 - $\psi(3686) \rightarrow K_S^0$ +anything
 - J/ψ and $\psi(3686) \longrightarrow \Sigma^+$ and $\overline{\Sigma}^-$
 - $\chi_{cJ} \rightarrow n K_S^0 \overline{\Lambda} + c.c.$
 - $\eta_c \rightarrow \eta \eta \eta'$
- ✓ BESIII will keep running !

Thanks for your attention!