Observation of triple J/ ψ meson production in proton-proton collisions at $\sqrt{s} = 13$ TeV

S. Leontsinis University of Zurich

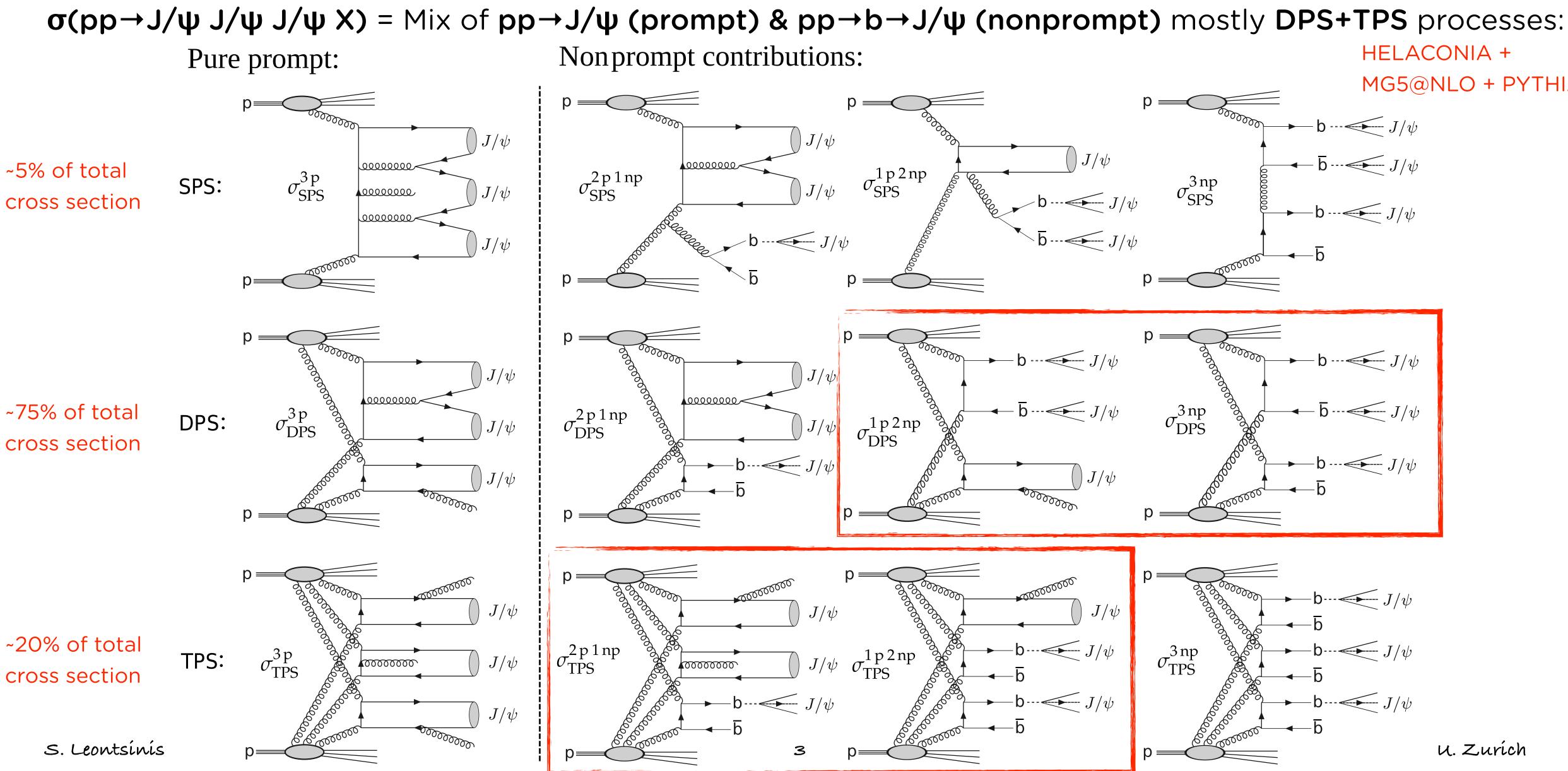
On behalf of the CMS Collaboration

Hadron 2021 19th International Conference on Hadron Spectroscopy and Structure 28th July 2021

Observation of triple J/ψ meson production Introduction

- Motivation for multiple production of hard/heavy particles studies:
 - study unknown energy evolution of transverse (impact parameter b) proton shape
 - probe generalized PDFs (x,Q² and b) of the proton
- Studies so far focused on double-parton scatterings (DPS):
- "Pocket formula": $\sigma_{\text{DPS}}^{\text{pp} \to \psi_1 \psi_2 + X} = \left(\frac{m}{2}\right) \frac{\sigma_{\text{SPS}}^{\text{pp} \to \psi_1 + X} \sigma_{\text{SPS}}^{\text{pp} \to \psi_2 + X}}{\sigma_{\text{eff},\text{DPS}}}$
 - overlap
 - but measurements of DPS σ_{eff} :
 - • σ_{eff} ~ 5 mb, from di-quarkonia final states
 - • σ_{eff} ~ 15 mb, from jets, photons, EWK bosons
- Alternative: Study triple-parton scatterings (TPS).
 - process never observed so far
 - $\sigma_{eff,TPS} = (0.82 \pm 0.11) \sigma_{eff,DPS}$ [PRL 118 (2017) 122001]
 - •triple prompt-J/ψ: DPS & TPS dominate [PRL122 (2

control backgrounds for rare SM resonance decays & BSM production of multiple heavy particles


•assuming no parton correlations, the effective cross section (σ_{eff}) is derivable from p-p transverse

	PRL 118, 122001 (2017) PHYSICAL REVIEW LETTERS
	Triple Parton Scatterings in High-Energy Proton-Proton Collisions
•	David d'Enterria ¹ and Alexander M. Snigirev ² ¹ CERN, EP Department, 1211 Geneva, Switzerland ² Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, 119991 Moscow, Ru (Received 23 December 2016; published 23 March 2017)
	PHYSICAL REVIEW LETTERS 122 , 192002 (2019)
<u>[2019] 192002]</u>	Triple Prompt J/ψ Hadroproduction as a Hard Probe of Multiple-Parton Sc
	Hua-Sheng Shao ^{1,†} and Yu-Jie Zhang ^{2,3,*} ¹ Laboratoire de Physique Théorique et Hautes Energies (LPTHE), UMR 7589, Sorbonne Université et 4 place Jussieu, 75252 Paris Cedex 05, France ² School of Physics and Nuclear Energy Engineering, Beihang University, Beijing 100083, China ³ Center for High Energy Physics, Peking University, Beijing 100871, China

Observation of triple J/ ψ meson production Introduction

HELACONIA +


u. Zurích

CMS Experiment at the LHC, CERN Data recorded: 2017-Oct-18 16:07:04.866439 GMT Run / Event / LS: 305237 / 1277785997 / 682

- Observation of triple J/ ψ production in 6 muon final state
- Measurement of fiducial $\sigma(pp \rightarrow J/\psi J/\psi J/\psi X)$
- Extraction of $\sigma_{eff,DPS}$ from data vs. theory

<u>CMS-PAS-BPH-21-004</u>

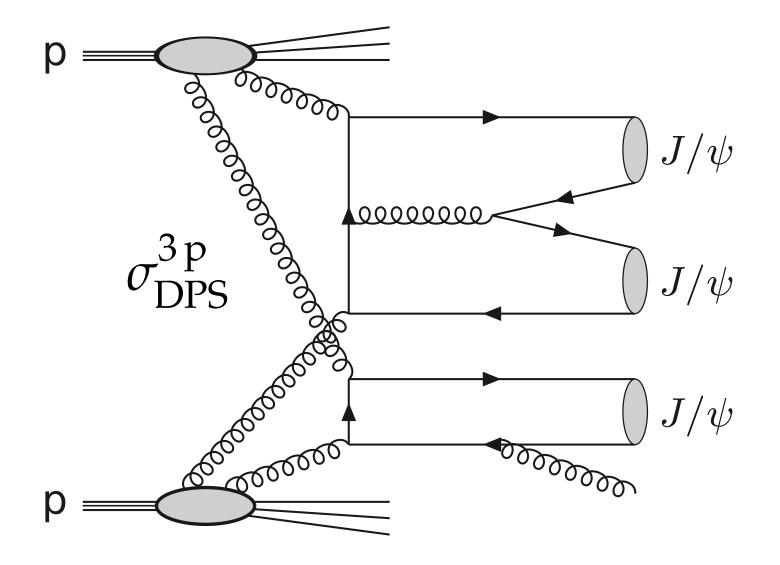
u. Zurích

Observation of triple J/ψ meson production Data reconstruction and selection

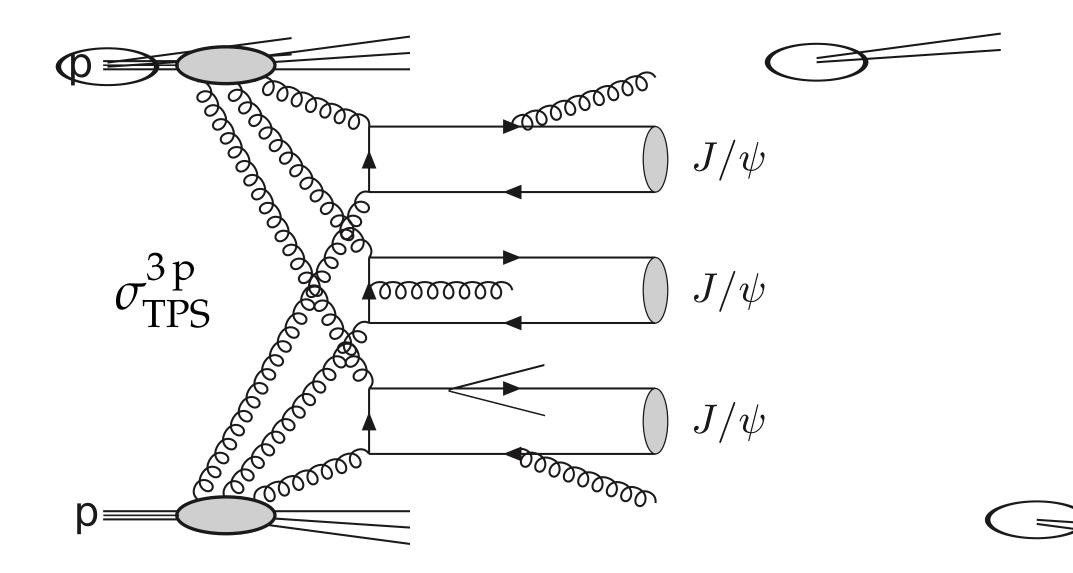
- •Run-2 dataset 133 fb⁻¹
- •6 or more muons
- muon $p_T > 2.5$ GeV for $1.2 < |\eta| < 2.4$ or $p_T > 3.5$ GeV for $|\eta| < 1.2$
- •muons reconstructed by combining information from the silicon tracker and the muon system
- dimuon invariant mass between 2.9 and 3.3 GeV
 - muons in pair have opposite charge
 - •no muon is shared between 2 J/ ψ candidates
 - dimuon vertex probability greater than 0.5%
 - •dimuon $p_T > 6.5$ GeV and |y| < 2.4
- one
- Yield is 6 events
 - •4 from the 2018 and 2 from the 2017 dataset

•Selected muons are matched either to their common PV or to a secondary vertex consistent with the PV

•eliminating the possibility of accidental combinations of muons from different pp pileup collisions

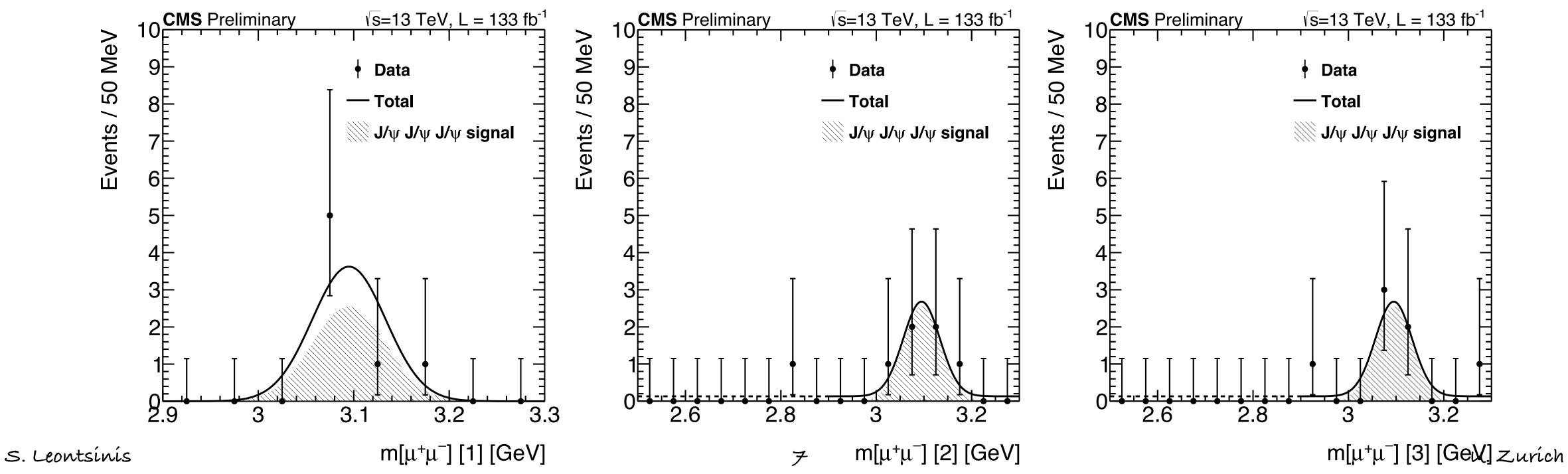


Observation of triple J/ ψ meson production Simulation


- Two sets of MC samples are generated using HelacOnia dedicated for heavy quarkonia production
 - can produce SPS $(J/\psi+J/\psi+J/\psi)_{sps}$
- •SPS not generated due to small yield expectation

• **DPS** triple J/ψ production • a mixture of $(J/\psi+J/\psi)_{sps} + J/\psi_{sps}$

- •**TPS** triple J/ψ production
- a mixture of $J/\psi_{sps} + J/\psi_{sps} + J/\psi_{sps}$



Observation of triple J/ψ meson production Signal extraction

• Yield is extracted using a **3D unbinned extended maximum likelihood** fit

- •signal: gaussian with resolution fixed from MC fit and mean fixed to PDG J/ ψ mass
- background: exponential
- accounting all combinations of signals and background dimuon pairs:
 - 8 yields extending the likelihood
 - •1 signal J/Ψ^{1}_{signal} + J/Ψ^{2}_{signal} + J/Ψ^{3}_{signal}
 - •7 background (combinations of the three J/ψ to be signal or background)
- Signal yield **5.0** + 2.6 1.9 events

Observation of triple J/ ψ meson production Cross section calculation

•Fiducial cross section $\sigma(pp \rightarrow J/\psi J/\psi J/\psi X) = N/(\epsilon \times L \times B^{3}J/\psi \rightarrow \mu\mu)$

- •N number of signal events
 - •5.0 +2.6 -1.9

•L total integrated luminosity

- •133 fb⁻¹
- •ε total efficiency coming from
 - •trigger 84%
 - reconstruction 78%
- $B^{3}_{J/\psi \to \mu\mu} = (5.96\% \pm 0.03\%)^{3}$

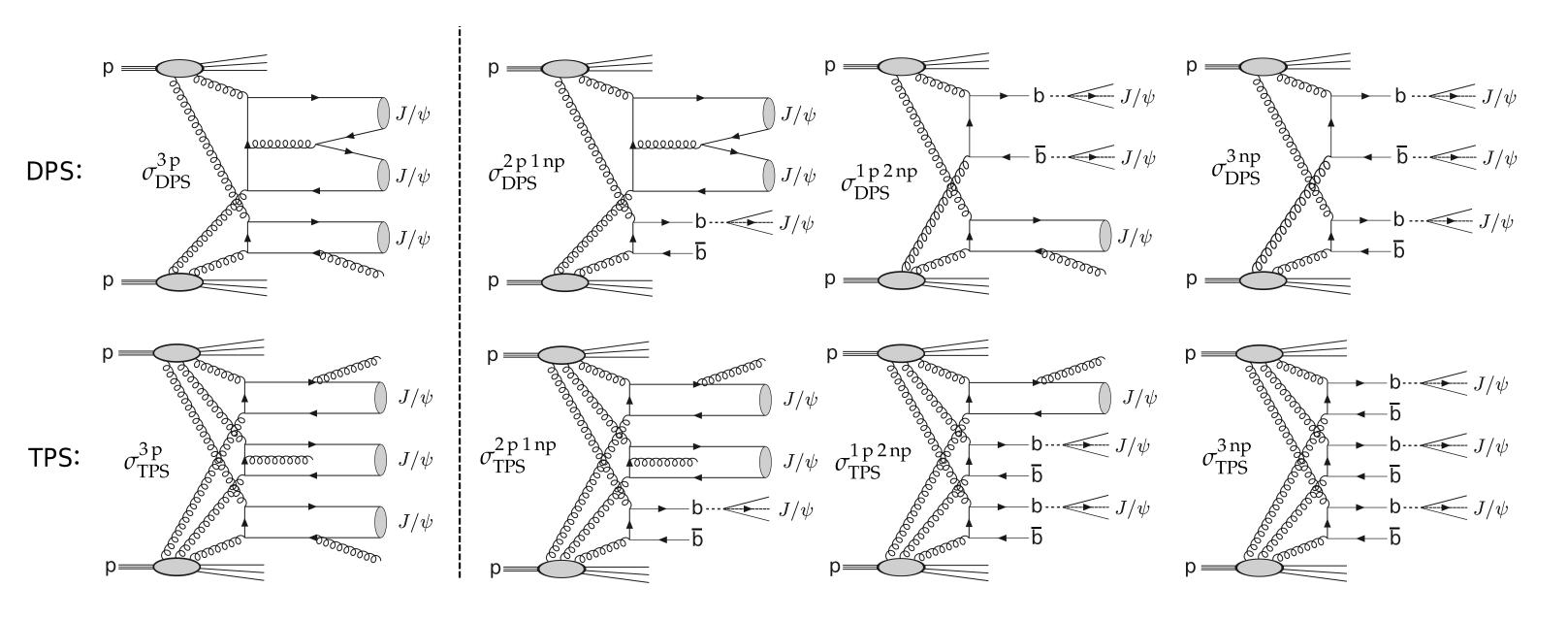
Fiducial requirement	
For all muons	$p_{\rm T} > 3.5 {\rm GeV}$ for $ \eta <= 1.2$
	$p_{\rm T} > 2.5 { m GeV}$ for $1.2 < \eta < 2.4$
For all J/ ψ mesons	$p_{\rm T} > 6 { m GeV}$ and $ y < 2.4$
	$2.9 < m_{\mu^+\mu^-} < 3.3 \mathrm{GeV}$

Observation of triple J/ψ meson production Systematics

- Signal shape
 - change Gaussian to a crystal-ball and Gaussian without a resolution constraint
- Background shape
 - change exponential to zero and first order polynomial
- Muon reconstruction efficiency
 - the effect on the cross section extraction
- Trigger efficiency
 - •change to TPS MC sample to calculate σ
- •Luminosity
 - •1.8% from LUMI POG
- •MC statistics
 - due to size of the MC sample
- Branching fraction
 - •1.7%
- Total is 6.2%

•Measured cross section for triple J/ ψ production, within the fiducial region

• $\sigma(pp \rightarrow J/\psi J/\psi J/\psi X) = 272 + 141 - 104$ (stat) ± 17 (syst) fb S. Leontsinis


•allowing the correction factors of each (p_T , η) bin to float within their assigned precision, and checking

Source	Relative uncertainty
J/ ψ meson signal shape	0.8%
Dimuon continuum background shape	3.4%
Muon reconstruction efficiency	1.0%
Trigger efficiency measurement	3.4%
MC sample size	3.0%
Integrated luminosity	1.6%
Branching fraction	1.7%
Total	6.2%

Observation of triple J/ ψ meson production Nature of the J/ ψ mesons

- A classification of prompt and nonprompt events is attempted
 - •2 approaches
 - cut on J/ψ proper decay length at 60 μ m
 - fit proper decay length

 - compare the sPlot prompt and nonprompt weights per event
- Same answer from both methods
 - •2 events: 2 nonprompt + 1 prompt
 - •1 event: 1 nonprompt + 2 prompt
 - •1 event: 3 nonprompt
 - •1 event: 3 prompt

• fit all individual measurements with prompt and nonprompt templates derived from MC •unbinned maximum likelihood fit with 2 variables extending it: prompt and nonprompt

Cross section to produce two charmonium mesons in a DPS can be written as

$$\sigma_{\text{DPS}}^{\text{pp} \to \psi_1 \psi_2 + X} = \left(\frac{m}{2}\right) \frac{\sigma_{\text{SPS}}^{\text{pp} \to \psi_1 + X} \sigma_{\text{SPS}}^{\text{pp} \to \psi_2 + X}}{\sigma_{\text{eff},\text{DPS}}}$$

• Similar "Pocket formula" for TPS:

$$\sigma_{\text{TPS}}^{\text{pp} \to \psi_1 \psi_2 \psi_3 + X} = \left(\frac{m}{3!}\right) \frac{\sigma_{\text{SPS}}^{\text{pp} \to \psi_1 + X} \sigma_{\text{SPS}}^{\text{pp} \to \psi_2 + X} \sigma_{\text{SPS}}^{\text{pp} \to \psi_3 + X}}{\sigma_{\text{SPS}}^2},$$

SPS, DPS, and TPS processes: $\sigma_{\rm tot}^{3J/\psi} = \sigma_{\rm SPS}^{3J/\psi} + \sigma_{\rm DPS}^{3J/\psi} +$ $= \left(\sigma_{\rm SPS}^{3\,\rm p} + \sigma_{\rm SPS}^{2\rm p1np}\right)$

 $+ \left(\sigma_{\text{DPS}}^{3\,\text{p}} + \sigma_{\text{DPS}}^{2\text{p}1\text{np}}\right)$

 $\sum_{\tau^{3J/\psi}} m_1 \left(\sigma_{\text{SPS}}^{2p} \sigma_{\text{SPS}}^{1p} + \sigma_{\text{SPS}}^{2p} \sigma_{\text{SPS}}^{1np} + \sigma_{\text{SPS}}^{1p} \sigma_{\text{SPS}}^{1p1np} + \sigma_{\text{SPS}}^{1p1np} \sigma_{\text{SPS}}^{1np} + \sigma_{\text{SPS}}^{1p} \sigma_{\text{SPS}}^{2np} + \sigma_{\text{SPS}}^{2np} \sigma_{\text{SPS}}^{2np} + \sigma_{\text{SPS$ sections: $v_{\rm DPS}$ $\sigma_{\rm eff,DPS}$ $\sigma_{\rm TPS}^{3J/\psi} = \frac{m_3 \left(\left(\sigma_{\rm SPS}^{1p} \right)^3 + \left(\sigma_{\rm SPS}^{1np} \right)^3 \right) + m_2 \left(\left(\sigma_{\rm SPS}^{1p} \right)^2 \sigma_{\rm SPS}^{1np} + \sigma_{\rm SPS}^{1p} \left(\sigma_{\rm SPS}^{1np} \right)^2 \right)}{\sigma_{\rm off TPS}^2}$ S. Leontsínís

, where m=1 for $\psi_1 = \psi_2$, and m=2 if $\psi_1 \neq \psi_2$

, where m=1,3,6 depending on whether all three, two, or none of the Ψ_i states are identical

• Theoretical total triple-J/ ψ cross section expected to correspond to the sum of the contributions from

$$-\sigma_{\text{TPS}}^{3J/\psi} = r + \sigma_{\text{SPS}}^{1p2np} + \sigma_{\text{SPS}}^{3np} + r + \sigma_{\text{DPS}}^{1p2np} + \sigma_{\text{SPS}}^{3np} + (\sigma_{\text{TPS}}^{3p} + \sigma_{\text{TPS}}^{2p1np} + \sigma_{\text{TPS}}^{1p2np} + \sigma_{\text{TPS}}^{3np} + \sigma_{\text{TPS$$

• With the DPS and TPS triple-J/ ψ cross sections derivable from the single- and double-J/ ψ SPS cross

with $m_1=1$, $m_2=1/2$, $m_3=1/6$

•Using 8 theoretical SPS cross sections from HELACONIA(LO,NLO*)+data,PYTHIA8, and MG5@NLO+PYTHIA8:

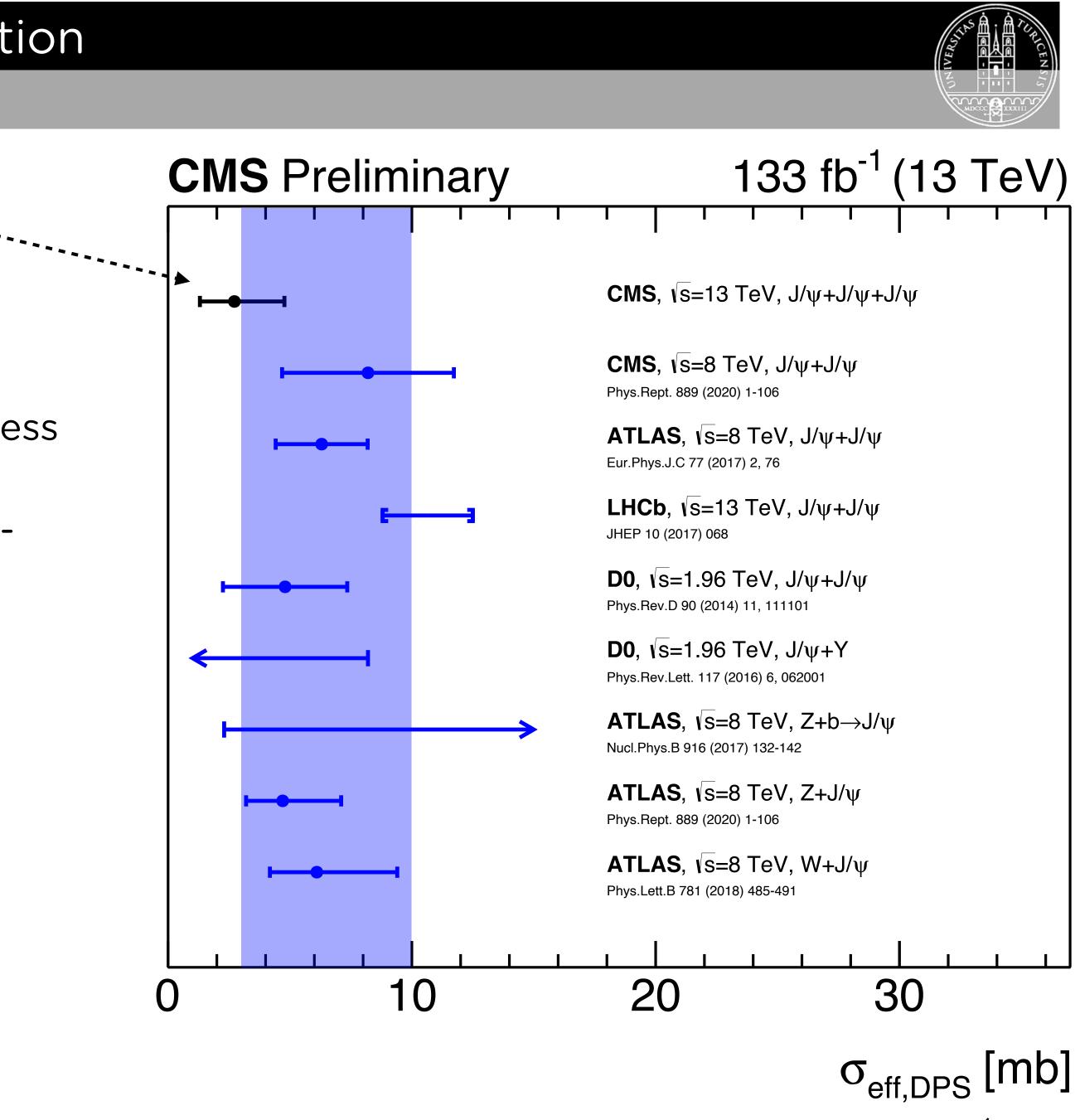
SPS single-J/ ψ production		SPS double-J/ ψ production			SPS triple-J/ ψ production			
HO(DATA)	mg5nlo+py8	HO(NLO*)	HO(LO)+PY8	mg5nlo+py8	HO(LO)	HO(LO)+PY8	HO(LO)+PY8	mg5nlo+py8
$\sigma^{1p}_{ m SPS}$	$\sigma_{ m SPS}^{ m 1np}$	$\sigma^{2p}_{ m SPS}$	$\sigma_{ m SPS}^{ m 1p1np}$	$\sigma_{ m SPS}^{ m 2np}$	$\sigma^{ m 3p}_{ m SPS}$	$\sigma^{ m 2p1np}_{ m SPS}$	$\sigma_{ m SPS}^{ m 1p2np}$	$\sigma_{ m SPS}^{ m 3np}$
$570\pm57\mathrm{nb}$	$600^{+130}_{-220}\mathrm{nb}$	$40^{+80}_{-26}\mathrm{pb}$	$24^{+35}_{-16}{ m fb}$	$430^{+95}_{-130}\mathrm{pb}$	<5 ab	$5.2^{+9.6}_{-3.3}{ m fb}$	$14^{+17}_{-8}{ m ab}$	$12\pm4\mathrm{fb}$

•Nonprompt cross sections scaled to NNLO (x1.15). Theoretical uncertainties dominated by scale (then PDF).

•Using the sum Equation of previous slide, assuming $\sigma_{eff,TPS} = (0.82 \pm 0.11) \sigma_{eff,DPS}$, the DPS effective cross section can be extracted requiring that total triple-J/ ψ cross section matches the measured value:

Process:	3 prompt	2 prompt+1 nonprompt	1 prompt+2 nonprompt	3 nonprompt	total
SPS:					
$\sigma_{\rm SPS}^{3J/\psi}$ (fb) $N_{\rm SPS}^{3J/\psi}$ DPS:	$< 510^{-3}$	5.7	0.014	12	18
$N_{\rm SPS}^{3J/\psi}$	0.0	0.1	0.0	0.22	0.32
DPS:					
$\sigma_{ m DPS}^{ m 3J/\psi}$ (fb)	8.4	8.9	90	95	202
$\sigma^{3J/\psi}_{ m DPS}$ (fb) $N^{3J/\psi}_{ m DPS}$	0.15	0.16	1.7	1.7	3.7
TPS:					
$\sigma_{ m TPS}^{ m 3J/\psi}$ (fb)	6.1	19.4	20.4	7.2	53
$\sigma_{\text{TPS}}^{3J/\psi}$ (fb) $N_{\text{TPS}}^{3J/\psi}$	0.11	0.36	0.38	0.13	1.0
SPS+DPS+TPS:					
$\sigma_{ m tot}^{ m 3J/\psi}$ (fb)	15	34	110	114	272
$\sigma_{ m tot}^{ m 3J/\psi}$ (fb) $N_{ m tot}^{ m 3J/\psi}$	0.3	0.6	2.0	2.1	5.0

• Derived $\sigma_{eff,DPS}$ is found to amount to:

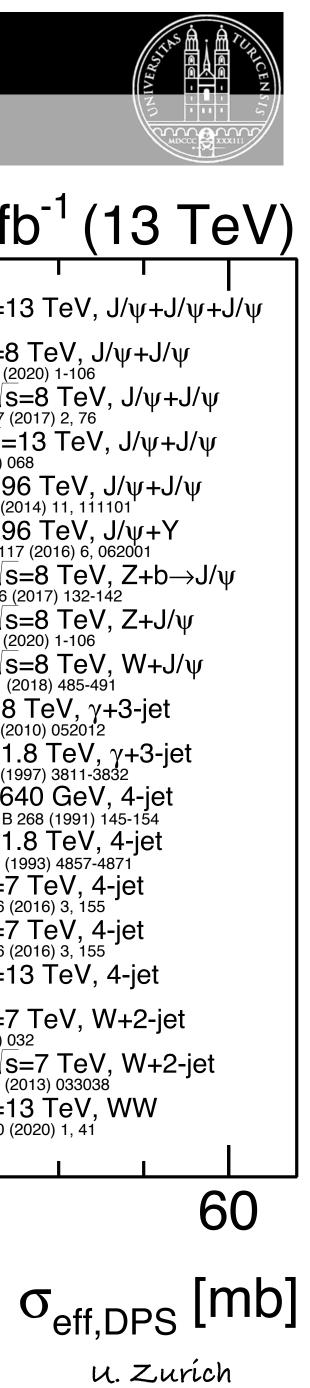

 $\sigma_{eff,DPS} = 2.7 + 1.4 - 1.0 (exp) + 1.5 - 1.0 (theo) mb$

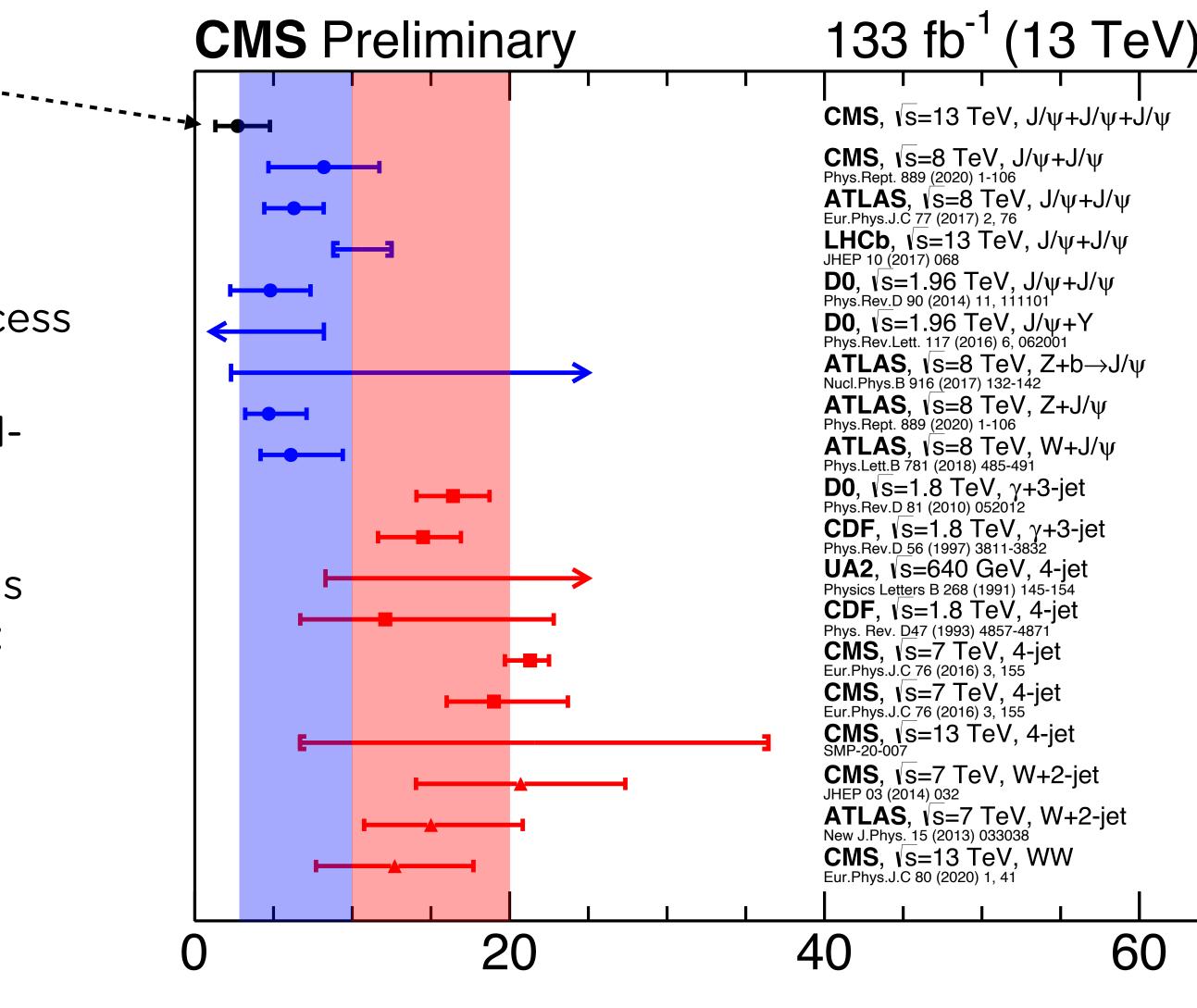
- The expected contributions from SPS, DPS, TPS processes amount to about
 - •SPS: 6%, DPS: 74%, TPS: 20%
 - •(confirming that triple-J/ ψ is an excellent process to study DPS/TPS)

• Derived $\sigma_{eff,DPS}$ value is consistent with the worlddata of effective DPS cross sections obtained previously from di-quarkonium production measurements:

• $\sigma_{\rm eff,DPS} \approx 3 - 10 \, \rm mb$

u. Zurích

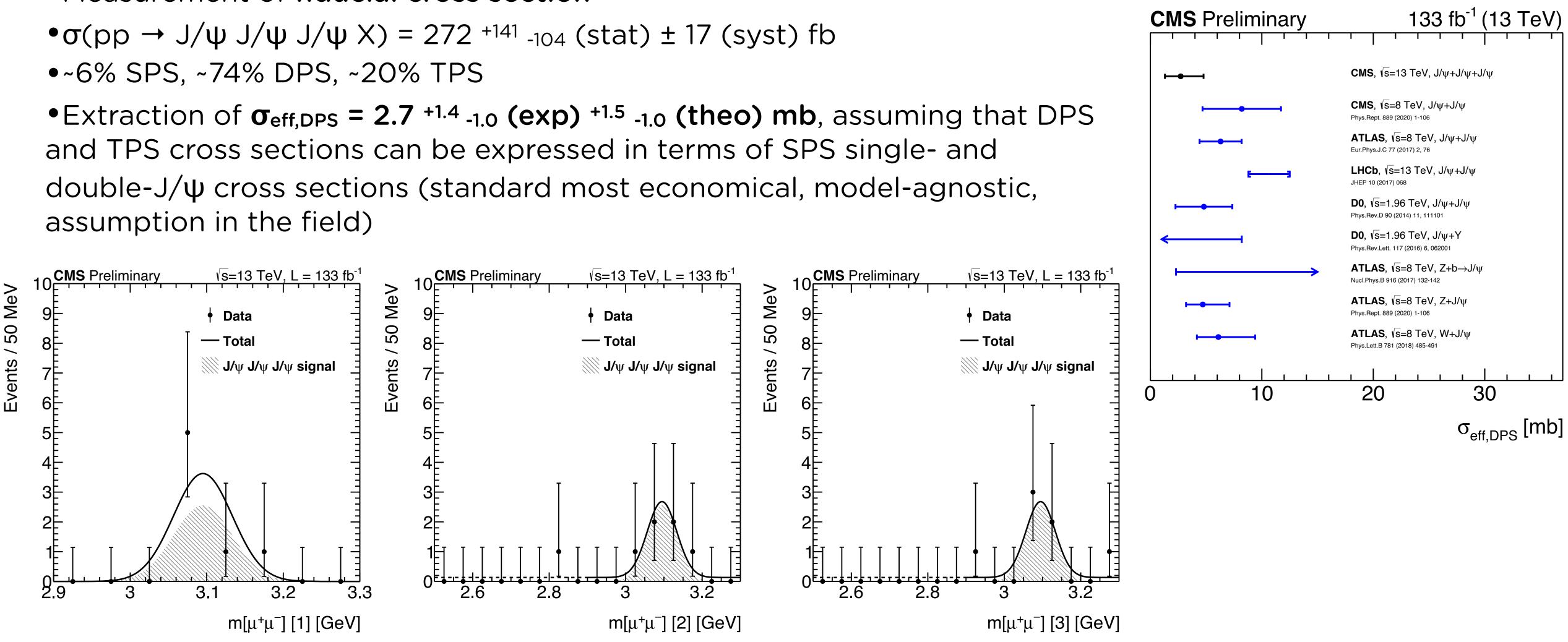

• Derived $\sigma_{eff,DPS}$ is found to amount to:


 $\sigma_{eff,DPS} = 2.7 + 1.4 - 1.0 (exp) + 1.5 - 1.0 (theo) mb$

- The expected contributions from SPS, DPS, TPS processes amount to about
 - •SPS: 6%, DPS: 74%, TPS: 20%
 - •(confirming that triple-J/ ψ is an excellent process to study DPS/TPS)

• Derived $\sigma_{eff,DPS}$ value is consistent with the worlddata of effective DPS cross sections obtained previously from di-quarkonium production measurements, but not consistent with extractions from processes with jets, photons, and W bosons:

• $\sigma_{\text{eff,DPS}} \approx 10 - 20 \text{ mb}$

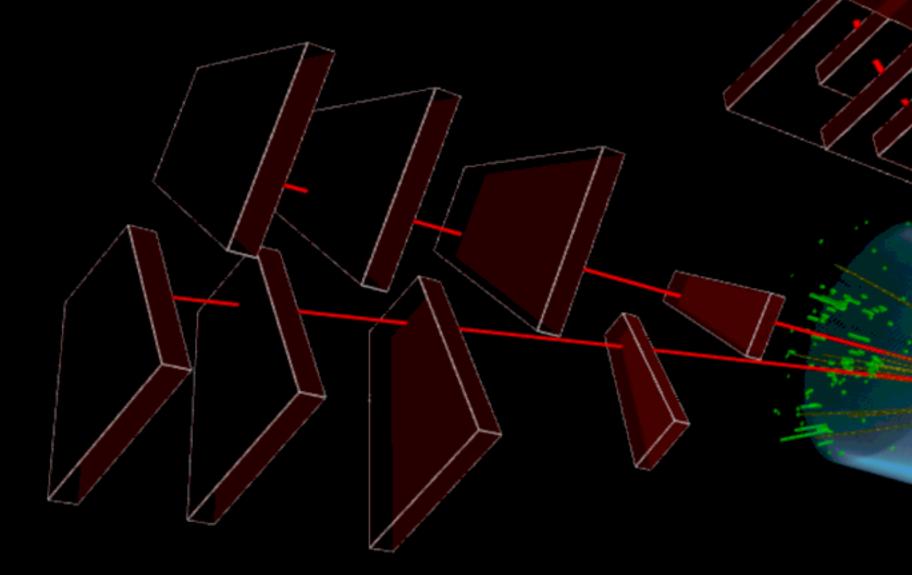


14

Observation of triple J/ ψ meson production Summary

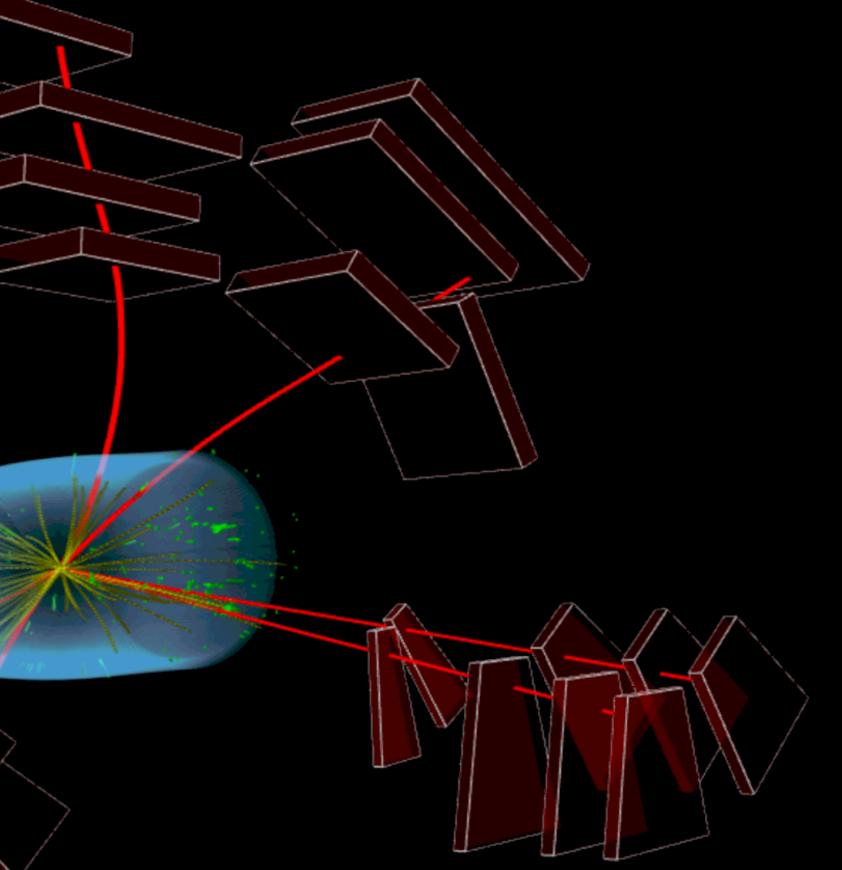
- •First observation of triple J/ ψ meson production using Run-2 data [CMS-PAS-BPH-21-004]
- Measurement of fiducial cross section

S. Leontsinis



backup

CMS Experiment at the LHC, CERN Data recorded: 2017-Oct-18 16:07:04.866439 GMT Run / Event / LS: 305237 / 1277785997 / 682



CMS Experiment at the LHC, CERN

Data recorded: 2017-Oct-18 16:07:04.866439 GMT Run / Event / LS: 305237 / 1277785997 / 682

