Doubly Cabibbo-Suppressed D decays at BESIII

 $\mathsf{Xiang}\;\mathsf{Pan}^{\bowtie}$

Fudan University

(on behalf of the BESIII Collaboration)

Universidad Nacional Autónoma de México, 26th-31st July, 2021

19th International Conference on Hadron Spectroscopy and Structure in memoriam Simon Eidelman

Xiang Pan (FDU)

Outline

BESIII experiment

Introduction

- 3 Study of DCS decay $D^+ o K^+ \pi^+ \pi^- \pi^0$ at BESIII
 - Data sample
 - Double-tag method
 - $D^+
 ightarrow K^+ \pi^+ \pi^- \pi^0$ tagged by hadronic decays
 - $D^+
 ightarrow K^+ \pi^+ \pi^- \pi^0$ tagged by semileptonic decays
 - Combined result

Future prospect

5 Summary

3

くぼう くほう くほう

BESIII experiment (See Panting's talk)

- $\sqrt{s} = (2.0 4.95) \text{ GeV}$
- MDC: $\sigma_P/P = 0.5\%$ @ 1 GeV; $\sigma_{dE/dx} = 6\%$
- TOF: σ_T = 68(60) ps for barrel (endcap)
- EMC: σ_E/E =2.5%(5%) for barrel (endcap)

Xiang Pan (FDU)

Introduction

Introduction

Deathly Oaklikks summaries and made

• The information of the Doubly Cabibbo-Suppressed (DCS) decays is very poor due to the limit of its small BF ($\sim 10^{-4}-10^{-5})$

Doubly Cabibbo-suppressed modes					
Γ_{138}	$K^+\pi^0$		$(2.08\pm0.21) imes 10^{-4}$	S=1.4 864	
Γ_{139}	$K^+\eta$		$(1.25\pm0.16) imes10^{-4}$	S=1.1 776	
Γ_{140}	$K^{+}\eta'(958)$		$(1.85\pm0.20) imes10^{-4}$	571	
Γ_{141}	$K^{+}\pi^{+}\pi^{-}$		$(4.91\pm0.09) imes10^{-4}$	846	
Γ_{142}	$K^+ ho^0$		$(1.9\pm 0.5) imes 10^{-4}$	679	
Γ_{143}	$K^{*}(892)^{0}\pi^{+}$, $K^{*}(892)^{0}$ –	$ ightarrow K^+\pi^-$	$(2.3\pm0.4) imes 10^{-4}$	714	
Γ_{144}	$K^+ f_0(980)$, $f_0(980) o \pi^+ \pi^-$		$(4.4\pm2.6) imes10^{-5}$		
Γ_{145}	$K_2^{*}(1430)^{0}\pi^+$, $K_2^{*}(1430)^{0}$	$ ightarrow K^+\pi^-$	$(3.9\pm2.7) imes10^{-5}$		
Γ_{146}	$K^{\!+}\pi^{\!+}\pi^{-}$ nonresonant		not seen	846	
Γ_{147}	$K^+\pi^+\pi^-\pi^0$	Our results	$(1.21\pm0.09) imes10^{-3}$	817	
Γ_{148}	$K^+\omega$	Our results	$(5.7^{+2.5}_{-2.1}) imes 10^{-5}$	675	
Γ_{149}	2 <i>K</i> ⁺ <i>K</i> ⁻		$(6.14\pm0.11) imes10^{-5}$	550	
Γ_{150}	$\phi(1020)^0K^+$		$<2.1 imes10^{-5}$	CL=90%	
Γ_{151}	$K^{\!+}\phi(1020)$, $\phi o K^{\!+}K^{\!-}$		$(4.4\pm0.6) imes10^{-6}$		
Γ_{152}	K^+ ($K^+ K^-$) $_{S-wave}$		$(5.77\pm0.12) imes10^{-5}$	550	

3

Introduction

Introduction

• $\mathcal{R} = \mathcal{B}(DCS)/\mathcal{B}(CF)$ is expected to be of approximately tan⁴ θ_C (~ 0.29%) level, the known \mathcal{R} in D sector roughly support this expectation. More DCS study can check this expectation

DCS mode	$BF(\times 10^{-4})$	CF mode	$BF(\times 10^{-2})$	$\mathcal{R}(imes 10^{-3})$
$D^0 ightarrow K^+ \pi^-$	$1.50{\pm}0.07$	$D^0 ightarrow K^- \pi^+$	$3.946 {\pm} 0.03$	3.80±0.18
$D^0 ightarrow K^+ \pi^- \pi^0$	$3.05{\pm}0.15$	$D^0 ightarrow K^- \pi^+ \pi^0$	$14.4{\pm}0.5$	$2.12{\pm}0.13$
$D^0 ightarrow K^+ \pi^- \pi^- \pi^+$	$2.65{\pm}0.06$	$D^0 ightarrow K^- \pi^+ \pi^+ \pi^-$	$8.22{\pm}0.14$	3.22±0.09
$D^+ ightarrow K^+ \pi^+ \pi^-$	$4.91{\pm}0.09$	$D^+ ightarrow K^- \pi^+ \pi^+$	$9.38{\pm}0.16$	5.23±0.13

- Investigation of $D^+ \rightarrow K^+ \pi^+ \pi^- \pi^0$ offers an ideal opportunity to determine the BF of DCS $D \rightarrow VP$ decay $D^+ \rightarrow K^+ \omega$, which is helpful to improve the understanding of SU(3) asymmetry
- Searching for *CP* violation in DCS decays offers complementary information about *CP* violation in the charm sector

イロト 不得下 イヨト イヨト 二日

Study of DCS decay $D^+ \rightarrow K^+ \pi^+ \pi^- \pi^0$ at BESIII D

Data sample

D^+D^- data sample @3.773 GeV at BESIII

- $e^+e^- \rightarrow \psi(3770) \rightarrow D^+D^-$, $\mathcal{L}_{int} = 2.93 \text{ fb}^{-1}$, $N_{D^+D^-} \sim 8.3 \text{ M}$
- D^+D^- is produced near threshold, $E_{\rm cms} - 2M_{D^+} = 35 \text{ MeV}$
- Clean environment, good to detect neutral particles

A B A A B A

Double-tag method

• Tagged by hadronic decays

•
$$D^- \rightarrow K^+ \pi^- \pi^-$$

• $D^- \rightarrow K^0 \pi^-$

•
$$D^- \rightarrow K^+ \pi^- \pi^- \pi^0$$

Feature

- Absolute branching fraction
- Large ST data samples
- Clean environment

$$\begin{split} N_{\rm ST} &= 2N_{D^+D^-}\mathcal{B}_{\rm tag}\epsilon_{\rm tag} \\ N_{\rm DT} &= 2N_{D^+D^-}\mathcal{B}_{\rm tag}\mathcal{B}_{\rm sig}\epsilon_{\rm tag,sig} \\ \mathcal{B}_{\rm sig} &= \frac{N_{\rm DT}}{N_{\rm ST}\epsilon_{\rm DT}/\epsilon_{\rm ST}} \end{split}$$

• Tagged by semileptonic decays

•
$$D^-
ightarrow K^0 e^- ar{
u}_e$$

•
$$D^-
ightarrow K^+ \pi^- e^- \bar{\nu}_e$$

Feature

4

- New idea to determine BF with statistical independent
- Confirm the result tagged by hadronic decays

$$\mathcal{B}_{\mathrm{sig}} = rac{N_{\mathrm{SL,DCS}}}{2 \cdot N_{D^+D^-} \cdot \mathcal{B}_{\mathrm{SL}} \cdot \epsilon_{\mathrm{SL,DCS}} \cdot \mathcal{B}_{\mathrm{sub}}}$$

Study of DCS decay $D^+ \rightarrow K^+ \pi^+ \pi^- \pi^0$ at BESIII $D^+ \rightarrow K^+ \pi^+ \pi^- \pi^0$ tagged by hadronic decays

Tagged by hadronic decays [Phys. Rev. Lett. 125. 141802 (2020)]

• Fit to $M_{\rm BC}$ distribution of three single tags (Charge conjugation are implied)

$$M_{
m BC} = \sqrt{E_{
m beam}^2 - |\overrightarrow{p}_{D^-}|^2}$$

• Summary of single tag yields (N_{tag}^i) and reconstructed efficiencies (ϵ_{tag}^i)

Tag mode	$N_{ m tag}^i$	$\epsilon_{ ext{tag}}^{i}$ (%)
$D^- ightarrow K^+ \pi^- \pi^-$	798935 ± 1011	51.90 ± 0.08
$D^- ightarrow K^0_S \pi^-$	93308 ± 329	51.80 ± 0.17
$D^- ightarrow K^+ \pi^- \pi^- \pi^0$	258044 ± 1036	26.92 ± 0.09
Sum	1150287 ± 1484	
-		

Tagged by hadronic decays [Phys. Rev. Lett. 125. 141802 (2020)]

(Red and blue arrows point the signal and sideband regions for ω)

- Observable ω and η resonances
- $D^+ \rightarrow K^+ \eta$ has been measured with ST method and $\eta \rightarrow \gamma \gamma (439 \pm 72 \text{ events})$ [BESIII: PRD 97, 072004]
- $D^+
 ightarrow {\cal K}^+ \omega$ will be measured for the first time

Tagged by hadronic decays [Phys. Rev. Lett. 125. 141802 (2020)]

 $\Diamond D^+ \to K^+ \pi^+ \pi^- \pi^0$ yields obtained by 2D fit to $M_{\rm BC}^{\rm tag}$ vs. $M_{\rm BC}^{\rm sig}$ distributions

- BKGI(float): Only one D is reconstructed correctly
- BKGII(float): $e^+e^-
 ightarrow q ar q$
- BKGIII(float): Both D[±] are reconstructed incorrectly
- Peaking BKG(fixed): Tag correct and sig: $D^+ \rightarrow K^+ K^- (\rightarrow \pi^- \pi^0) \pi^+,$ $D^+ \rightarrow K^0_S (\rightarrow \pi^+ \pi^-) K^+ \pi^0$

 $\Diamond D^+ \to K^+ \omega$ yields obtained by 2D simultaneous fit to $M_{\rm BC}^{\rm tag}$ vs. $M_{\rm BC}^{\rm sig}$ distributions in ω signal and sideband regions

• Peaking BKG from ω sideband is $D^+ \to K^+ \pi^+ \pi^- \pi^0$

Top: 2D fit of all events

Middle: 2D fit of events lying in ω signal region

Bottom: 2D fit of events lying in ω sideband region

・ロト ・聞ト ・ヨト ・ヨト

3

Study of DCS decay $D^+ \rightarrow K^+ \pi^+ \pi^- \pi^0$ at BESIII $D^+ \rightarrow K^+ \pi^+ \pi^- \pi^0$ tagged by hadronic decays

Tagged by hadronic decays [Phys. Rev. Lett. 125. 141802 (2020)]

Decay mode	$N_{ m ST}~(imes 10^3)$	$N_{ m DT}$	$\epsilon_{ m sig}$ (%)	$\mathcal{B}_{ m sig}~(imes 10^{-3})$	$\mathcal{B}^*_{ m sig}~(imes 10^{-3})$
$D^{\pm} ightarrow K^{\pm} \pi^{\pm} \pi^{\mp} \pi^{0}$	1150.3 ± 1.5	350 ± 22	25.03 ± 0.13	$1.21 \pm 0.08 \pm 0.03$	$1.13 \pm 0.08 \pm 0.03$
$D^\pm ightarrow K^\pm \omega$	1150.3 ± 1.5	$9.2^{+4.0}_{-3.4}$	14.14 ± 0.09	$(5.7^{+2.5}_{-2.1}\pm0.2) imes10^{-2}$	-
$D^+ \rightarrow K^+ \pi^+ \pi^- \pi^0$	573.5 ± 1.0	181 ± 15	25.20 ± 0.18	$1.25 \pm 0.11 \pm 0.03$	$1.17 \pm 0.11 \pm 0.03$
$D^- ightarrow K^- \pi^- \pi^+ \pi^0$	572.7 ± 1.0	165 ± 15	24.95 ± 0.18	$1.16 \pm 0.11 \pm 0.03$	$1.08 \pm 0.11 \pm 0.03$

(Note: \mathcal{B}^*_{sig} : Remove the contributions from $D^{\pm} \to K^{\pm}\eta$, $D^{\pm} \to K^{\pm}\omega$, and $D^{\pm} \to K^{\pm}\phi$)

- Branching fractions for $D^{\pm} \rightarrow K^{\pm}\pi^{\pm}\pi^{\mp}\pi^{0}$ (statistical significance=23.3 σ), $D^{\pm} \rightarrow K^{\pm}\omega$ (statistical significance=3.3 σ), and charge-conjugated decays $D^{+} \rightarrow K^{+}\pi^{+}\pi^{-}\pi^{0}$ and $D^{-} \rightarrow K^{-}\pi^{-}\pi^{+}\pi^{0}$ are determined for the first time
- $\mathcal{B}_{D^+ \to K^+ \pi^+ \pi^- \pi^0}^{*} / \mathcal{B}_{D^+ \to K^- \pi^+ \pi^+ \pi^0} = (1.81 \pm 0.15)\% = (6.28 \pm 0.52) \tan^4 \theta_C$, significantly larger than the values (0.21-0.58)% measured for the other DCS decays

•
$$\mathcal{A}_{CP} = \frac{\mathcal{B}_{D^+ \to K^+ \pi^+ \pi^- \pi^0} - \mathcal{B}_{D^- \to K^- \pi^- \pi^+ \pi^0}}{\mathcal{B}_{D^+ \to K^+ \pi^+ \pi^- \pi^0} + \mathcal{B}_{D^- \to K^- \pi^- \pi^+ \pi^0}} = -0.04 \pm 0.06 \pm 0.01$$

・ロン ・聞と ・ヨン ・ヨン … ヨ

Study of DCS decay $D^+ \rightarrow K^+ \pi^+ \pi^- \pi^0$ at BESIII $D^+ \rightarrow K^+ \pi^+ \pi^- \pi^0$ tagged by hadronic decays

Tagged by hadronic decays [Phys. Rev. Lett. 125. 141802 (2020)]

• Comparison of invariant masses for different particles combinations between data and MC

• Some possible sub-resonances, such as K^* , ρ ..., can be seen

Xiang Pan (FDU)

Study of DCS decay $D^+ \to K^+ \pi^+ \pi^- \pi^0$ at BESIII $D^+ \to K^+ \pi^+ \pi^- \pi^0$ tagged by semileptonic decays

Tagged by semileptonic decays [arXiv:2105.14310]

• Search for $D^- \to K^0(\to \pi^+\pi^-) e^- \bar{\nu}_e/K^+\pi^- e^- \bar{\nu}_e$ vs. $D^+ \to K^+\pi^+\pi^-\pi^0$

Combined result

BESIII results				
Tag side	${\cal B}(D^+ o K^+ \pi^+ \pi^- \pi^0)(\%)$	Precision(%)		
Hadronic decays	$1.13 \pm 0.08 \pm 0.03$	7.56		
Semileptonic decays	$1.03 \pm 0.12 \pm 0.06$	13.03		
Average	$1.10 \pm 0.07 \pm 0.03$	6.92		

(Note: The contributions from $D^{\pm} \to K^{\pm}\eta$, $D^{\pm} \to K^{\pm}\omega$, and $D^{\pm} \to K^{\pm}\phi$ are removed)

• The correlated uncertainties of K^{\pm} , $\pi^{+}\pi^{-}$ tracking/PID, π^{0} reconstruction, and MC model are considered

• $\mathcal{R}(DCS/CF)_{ave} = (1.76 \pm 0.13)\% = (6.11 \pm 0.52) \tan^4 \theta_C$

Future prospect

BESIII plan to take ${\sim}20~{\rm fb}^{-1}$ (3+17) data $@\sqrt{s}=3.773$ GeV [Chin. Phys. C, 2020, 44(4)]

With about $6.5 \times$ data

- Precision of $\mathcal{B}(D^+ \rightarrow K^+ \pi^+ \pi^- \pi^0)$: 6.9% $\rightarrow \sim$ 2.7%
- $N(D^+ \rightarrow K^+ \pi^+ \pi^- \pi^0)$ is expected to be larger than 2000, PWA will be available \rightarrow explain the unusual \mathcal{R} ?
- \mathcal{A}_{CP} : $(-0.04\pm0.06) \rightarrow (-0.04\pm0.02)$ (assume central value is the same)
- Statistical significance for $D^+
 ightarrow {\cal K}^+ \omega$ is expected to be larger 5σ
- More DCS decays can be studied

$$D^0 \to K^+ \pi^- \eta$$

•
$$D^+ \rightarrow K^+ \eta \eta$$

•
$$D^+ \rightarrow K^+ \pi^+ \pi^- \eta$$

C

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ 三臣 - のへ⊙

Summary

Precise measurement of DCS decay $D^+ \to K^+ \pi^+ \pi^- \pi^0$ using 2.93 fb⁻¹ data $@\sqrt{s} = 3.773$ GeV have been reported by BESIII

- The results of two tagged methods are consistent with each other
- At present, $D^+ \to K^+ \pi^+ \pi^- \pi^0$ has the largest branching fraction among the doubly-Cabibbo suppressed D decay
- $\mathcal{R}(DCS/CF) = (6.11 \pm 0.52) \tan^4 \theta_C$, significantly larger than other DCS decays
- ${\cal B}(D^+ o K^+ \omega)$ is also measured with 3.3 σ statistical significance
- No evidence for $C\!P$ violation is found in $D^+ \to K^+ \pi^+ \pi^- \pi^0$
- BESIII will collect 20 fb⁻¹ data at $\psi(3770)$ in the next two years, which provide a good chance to further study this decay and other DCS decays

Thanks for your attention!

・ロト ・四ト ・ヨト ・ヨト ・ヨ