

Amplitude analyses of multibody hadronic D decays at BESIII

Panting Ge Wuhan University on behalf of the BESIII collaboration

19th International Conference on Hadron Spectroscopy and Structure

26th - 31st of July, 2021, Universidad Nacional Autónoma de México

Outline

- Introduction
- Strategy
- Amplitude analyses and BF measurements
- Summary

Introduction

- Amplitude (Dalitz plot) analyses provide a method to study the hadronic decays of D_{s}^{+}/D^{+} .
 - Hadron spectroscopy & Structure of the resonance
 - Determine the phase of the intermediate mode
- Understand the dynamics of 2-body decays of D_s^+/D^+ .
 - $D_s^+ \to SP, D_s^+ \to AP, D_s^+/D^+ \to VP...$ (test SU(3)_F symmetry)
- Reduce the systematic uncertainties related to the substructures in branching fraction measurement
- Analyses of
 - $D_s^+ \to K^- K^+ \pi^+$ [arXiv:2011.08041]
 - $D_s^+ \to K_s^0 \pi^+ \pi^0$
 - $D_s^+ \rightarrow K_s^0 K^- \pi^+ \pi^+$

- [JHEP06(2021)181]
 - [Phys. Rev. D **103**, 092006 (2021)]
- $D_s^+ \to K^- K^+ \pi^+ \pi^0$ [arXiv:2103.02482]
- $D_s^+ \to \eta \pi^+ \pi^+ \pi^-$ [arXiv:2106.13536]
- $D^+ \to K^0_{s} K^+ \pi^0$ [Phys. Rev. D 104, 012006 (2021)]

Data sets

BESIII detector

Magnet yoke	SC magnet, 1T	RPC MUC			
TOF, (barrel) 90/ (endcap)110~120ps		Data samples	(GeV)	Lum. ()	xCLEO-c
Be beam pipe		$D^0 \bar{D^0} / D^- D^+$	3.773	2.93	3.6x
		$D_s D_s^*$	4.178	3.19	5.3x
MDC, 130 μm		$D_s D_s^*$	4.189-4.226	3.13	-
	CsI(Tl) calorimeter, 2.5%@1	GeV			

• pair production at threshold

- Fully reconstructed event
- Almost free of background

Double tag technique

5

DT method

- M(D_s)
- Background analysis

MC simulation

sideband

multivariate analysis

• Description of signal spectrum (M(D_s))

MC shape \otimes Gaussian

MC shape or polynomial for background

Tag mode	$M_{tag} \; ({\rm GeV}/c^2)$
$D_s^- \to K_S^0 K^-$	[1.948, 1.991]
$D_s^- \to K^+ K^- \pi^-$	[1.950, 1.986]
$D_s^- ightarrow K_S^0 K^- \pi^0$	[1.946, 1.987]
$D_s^- \to K^+ K^- \pi^- \pi^0$	[1.947, 1.982]
$D_s^- \to K_S^0 K^- \pi^- \pi^+$	[1.958, 1.980]
$D_s^- \to K_S^0 K^+ \pi^- \pi^-$	[1.953, 1.983]
$D_s^- \to \pi^- \eta_{\gamma\gamma}$	[1.930, 2.000]
$D_s^- o \pi^- \eta'_{\pi^-\pi^+\eta_{\gamma\gamma}}$	[1.940, 1.996]

- ΔE_{tag}
- M_{BC}^{tag} : within (1.863, 1.879) GeV/ c^2

Tag mode	$\Delta E_{tag} \; (\text{GeV})$
$D^- \rightarrow K^+ \pi^- \pi^-$	[-0.022, 0.021]
$D^- \rightarrow K^+ \pi^- \pi^- \pi^0$	[-0.060, 0.034]
$D^- \to K^0_s \pi^-$	[-0.019, 0.021]
$D^- \to K^0_s \pi^- \pi^0$	[-0.071, 0.041]
$D^- \to K^0_s \pi^+ \pi^- \pi^-$	[-0.025, 0.023]
$D^- \rightarrow K^+ K^- \pi^-$	[-0.019, 0.018]

Formalism

- Amplitude analysis:
 - Unbinned maximum likelihood Fit:
 - PDF = $f_s S + (1 f_s) B = \epsilon(p_j) R_4(p_j) [f_s \frac{|A_{D_s}(a_i, p_j)|^2}{\int \epsilon(p_j) |A_{D_s}(a_i, p_j)|^2 R_4(p_j) dp_j} + (1 f_s) \frac{B_{\epsilon}(p_j)}{\int B(p_j) R_4(p_j) dp_j}]$ Acceptance function $B_{\epsilon} = B/\epsilon$

Acceptance function

•
$$A_{D_s \rightarrow sig} = \Sigma_n c_n A_n$$
, $c_n = \rho_n e^{i\phi_n}$

- Covariant tensor formalism
- $A_n = P_n^1 P_n^2 S_n F_n^1 F_n^2 F_n^{D_s}$, P_n^i propagator, F_n^i barrier, S_n angular distribution.
- Log-likelihood:

•
$$\ln \mathcal{L}_{\text{total}} = \sum_{k}^{N_{data}} \ln(f_s S(p_k) + (1 - f_s) B(p_k))$$
. RooNDKeysPdf

- For $D_s^+ \to \pi^+ \pi^0 \eta$:
 - $\ln \mathcal{L}_{total} = \Sigma_k^{N_{data}} \ln(S(p_k)) + \Sigma_k^{N_{data}} w_{bkg}^k \ln(S(p_k))$ adding the negative weight

MC integration

Bkg function

(RooNDKeysPdf)

 $For D^+ \rightarrow K^0_s K^+ \pi^0, f_s = 1$

- **BF Measurement**
 - Update the MC samples with the results of amplitude analysis.
 - Looser selection criteria, more statistics.

Amplitude analysis of $D_s^+ o K^- K^+ \pi^+$

Fit model:

χ^2 /ndf = 290/280

Amplitude	BABAR	CLEO	BESIII (this analysis)
$D_s^+ \rightarrow \bar{\bar{K}}^*(892)^0 K^+$	47.9±0.5±0.5	$47.4 \pm 1.5 \pm 0.4$	48.3±0.9±0.6
$D_s^+ \rightarrow \phi(1020)\pi^+$	$41.4 \pm 0.8 \pm 0.5$	$42.2 \pm 1.6 \pm 0.3$	$40.5 \pm 0.7 \pm 0.9$
$D_s^+ \rightarrow S(980)\pi^+$	$16.4 \pm 0.7 \pm 2.0$	$28.2 \pm 1.9 \pm 1.8$	$19.3 \pm 1.7 \pm 2.0$
$D_s^+ \to K_0^* (1430)^0 K^+$	$2.4 \pm 0.3 \pm 1.0$	$3.9 \pm 0.5 \pm 0.5$	$3.0 \pm 0.6 \pm 0.5$
$D_s^+ \rightarrow f_0(1710)\pi^+$	$1.1 \pm 0.1 \pm 0.1$	$3.4 \pm 0.5 \pm 0.3$	$1.9 \pm 0.4 \pm 0.6$
$D_s^+ \rightarrow f_0(1370)\pi^+$	$1.1 \pm 0.1 \pm 0.2$	$4.3 \pm 0.6 \pm 0.5$	$1.2 \pm 0.4 \pm 0.2$
$\sum FF(\%)$	$110.2 \pm 0.6 \pm 2.0$	$129.5 \pm 4.4 \pm 2.0$	$114.2 \pm 1.7 \pm 2.3$
χ^2/NDF	2843/2291=1.2	170/117=1.5	290/280=1.04
Events	96307 ± 369(purity 95%)	14400(purity 85%)	4397(purity 99.6%)

4397 DT events with a purity of 99.6% (a) $\sqrt{s} = 4.178$ GeV

- $D_s^+ \rightarrow K^- K^+ \pi^+$ is a golden channel which is often used as the normalization mode.
- BF of $D_s^+ \to f_0(980)\pi^+$ PRD 79, 072008 (CLEO-c) PRD 83, 052001 (BABAR)
- Do not distinguish between $f_0(980)/a_0(980)$
- Background free

Amplitude analysis of $D_s^+ o K^- K^+ \pi^+$

The parameterization of S(980):

$$A_{S(980)} = \frac{1}{m_0^2 - m^2(K^+K^-) - im_0\Gamma_0\rho_{K^+K^-}}$$

$$\rho_{K^+K^-} = \frac{1}{\sqrt{((1 - 4m(K)^2)/m(K^+K^-)^2)}}$$

$$m_0 = (0.919 \pm 0.006_{stat} \pm 0.030sys)GeV/c^2$$

$$\Gamma_0 = (0.272 \pm 0.040 \pm 0.024)GeV$$

 $K^+ K^-$ S-wave (S(980)) is extracted from model-independent partial wave analysis

Branching Fraction:

- $\mathscr{B}(D_s^+ \to K^- K^+ \pi^+) = (5.47 \pm 0.08 \pm 0.13)\%$
- $\mathscr{B}(D_s^+ \to \phi(1020)\pi^+) = (4.60 \pm 0.17)\%$
- $\mathscr{B}(D_s^+ \to k^*(\bar{892})^0 K^+) = (3.94 \pm 0.12)\,\%$

Consistent with theoretical predictions Phys. Rev. D **93**, 114010 (2016)

Best precision

Amplitude analysis of $D_s^+ \to K_s^0 \pi^+ \pi^0$

Phase (ϕ_n)

0.0(fixed)

 $2.2 \pm 0.2 \pm 0.1$

 $3.2\pm0.2\pm0.1$

 $0.2 \pm 0.2 \pm 0.2$

 $0.2\pm0.3\pm0.1$

Magnitude (ρ_n)

1.0(fixed)

 2.7 ± 0.5

 0.4 ± 0.1

 0.3 ± 0.1

 0.8 ± 0.2

Fit model:

Amplitude

 $D_s^+ \to K_S^0 \rho^+$

 $D_s^+ \to K_S^0 \rho(1450)^+$

 $D_s^+ \to K^*(892)^0 \pi^+$

 $D_{s}^{+} \to K^{*}(892)^{+}\pi^{0}$

 $D_s^+ \to K^*(1410)^0 \pi^+$

352 DT events with purity of 88.9% $a\sqrt{s} = 4.178$ GeV

 $D_s^+ \rightarrow K^{*+}\pi^0$, $K^{*0}\pi^+$ are good modes to search for CPV and study the $SU(3)_F$ symmetry and its breaking effect.

BF measurement of $D_s^+ \to K_s^0 \pi^+ \pi^0$

JHEP06(2021)181

Showing the measured BFs of $D_s \rightarrow VP$ and theoretical predictions from various models ($\times 10^{-3}$)

Channel	PDG [1]	Y.L. Wu et al. [7]	H.Y. Cheng et al. [8]	F.S. Yu et al. [4]
$K^0 ho^+$		9.1 ± 7.7	11.47 ± 0.48	7.5 ± 2.1
$K^*(892)^0\pi^+$	2.13 ± 0.36	3.3 ± 3.5	3.65 ± 0.24	1.5 ± 0.7
$K^{*}(892)^{+}\pi^{0}$		1.3 ± 1.3	1.02 ± 0.07	0.1 ± 0.1

[4] PRD 84 (2011) 074019 [7] EPJC 42, (2005) 391 [8] PRD 100, (2019) 093002

- Signal shape: MC simulated shape \otimes Gaussian
- Background shape: MC simulated shape

•
$$\mathscr{B}(D_s^+ \to K_s^0 \pi^+ \pi^0) = (5.43 \pm 0.30 \pm 0.15) \times 10^{-3}$$

•
$$\mathscr{B}(D_s^+ \to K^0 \rho^+) = (5.46 \pm 0.84 \pm 0.44) \times 10^{-3}$$

- $\mathscr{B}(D_s^+ \to K^{*0}\pi^+) = (2.71 \pm 0.72 \pm 0.30) \times 10^{-3}$ $\mathscr{B}(D_s^+ \to K^{*+}\pi^0) = (0.75 \pm 0.24 \pm 0.06) \times 10^{-3}$

Test the CP conservation:

•
$$A_{CP} = \frac{\mathscr{B}(D_s^+) - B(D_s^-)}{\mathscr{B}(D_s^+) + B(D_s^-)} = (2.7 \pm 5.5 \pm 0.9)\%$$

Statistical error dominant. No CPV is observed.

Most precise measurements

Amplitude analysis of $D_s^+ \to K_s^0 K^- \pi^+ \pi^+$

Phys. Rev. D 103, 092006 (2021)

Label	Component	ϕ	FF(%)	Significance (σ)	
I	$D_s^+[S] \to K^*(892)^+ \bar{K}^*(892)^0$	0 (fixed)	$34.3 \pm 3.1 \pm 5.2$	>10.0	
II	$D_s^+[P] \to K^*(892)^+ \bar{K}^*(892)^0 - 1.61$	$0.08 \pm 0.03 \pm 7.5$	$1.1\pm0.1\pm8.3$		
III	$D_s^+[D] \to K^*(892)^+ \bar{K}^*(892)^0$	$-0.16 \pm 0.14 \pm 0.04$	$4.5\pm0.8\pm0.3$	8.2	
IV	$D_s^+ \to K^*(892)^+ \bar{K}^*(892)^0$		$40.6 \pm 2.9 \pm 4.9$		Dominant
V	$D_s^+ \to K^*(892)^+(K^-\pi^+)_{S-wave}$	$1.85 \pm 0.15 \pm 0.09$	$5.0 \pm 1.2 \pm 1.0$	6.2	
VI	$D_s^+ \to \bar{K}^*(892)^0 (K_S^0 \pi^+)_{S-wave}$	$-1.57 \pm 0.12 \pm 0.13$	$7.3\pm1.1\pm0.9$	9.1	
VII	$D_s^+ \to \eta(1475)\pi^+, \eta(1475) \to a_0(980)^-\pi^+$	$-1.95 \pm 0.15 \pm 0.07$	$10.8\pm2.6\pm5.2$	4.4	
VIII	$D_s^+ \to \eta(1475)\pi^+, \eta(1475) \to \bar{K}^*(892)^0 K_S^0$	$0.05 \pm 0.15 \pm 0.11$	$2.2\pm0.6\pm0.2$	4.5	
IX	$D_s^+ \to \eta(1475)\pi^+, \eta(1475) \to K^*(892)^+ K^-$	$0.05 \pm 0.15 \pm 0.11$	$2.2\pm0.6\pm0.2$	4.5	
IIX	$D_s^+ \to \eta(1475)\pi^+, \eta(1475) \to K^*(892)K$		$4.9\pm1.4\pm1.0$		
IIIX	$D_s^+ \to \eta(1475)\pi^+, \eta(1475) \to (K_S^0\pi^+)_{S-wave}K^-$	$2.30 \pm 0.11 \pm 0.07$	$23.6\pm3.6\pm7.5$	6.7	
Х	$D_s^+ \to f_1(1285)\pi^+, f_1(1285) \to a_0(980)^-\pi^+$	$-0.89 \pm 0.26 \pm 0.14$	$2.2\pm0.5\pm0.2$	6.0	
XI	$D_s^+ \to (K^*(892)^+K^-)_P \pi^+, (K^*(892)^+K^-)_P \to K^*(892)^+K^-)_P$	$-1.07 \pm 0.11 \pm 0.03$	$10.8\pm1.9\pm1.7$	9.2	

Amplitude analysis of $D_s^+ \to K^- K^+ \pi^+ \pi^0$

arXiv:2103.02482

 χ^2 /ndf = 288.6/273

13

3088 DT events with purity of 97.5% (a) $\sqrt{s} = 4.178 \text{~~} 4.226 \text{ GeV}$

The amplitudes of VIII, IX, X and XII are fixed by Clebsch Gordan coefficients and charge conjugation relations

Dominated by $D_s^+ \rightarrow VV$ processes:

Label	Amplitude	Phase (ϕ_n)	FF (%)	SS (σ)
Ι	$D_s^+[S] \to \phi \rho^+$	0.0 (fixed)	$42.64 \pm 1.30 \pm 0.77$	>20
II	$D_s^+[P] \to \phi \rho^+$	$1.64 \pm 0.05 \pm 0.02$	$8.58 \pm 0.69 \pm 0.37$	15.2
III	$D_s^+[D] \to \phi \rho^+$	$1.58 \pm 0.06 \pm 0.02$	$4.89 \pm 0.79 \pm 0.47$	8.4
	$D_s^+ \to \phi \rho^+$		$56.17 \pm 1.05 \pm 1.24$	
IV	$D_s^+[S] \to \bar{K}^{*0} K^{*+}$	$1.13 \pm 0.06 \pm 0.03$	$15.49 \pm 0.81 \pm 0.36$	>20
V	$D_s^+[P] \to \bar{K}^{*0} K^{*+}$	$2.82 \pm 0.07 \pm 0.03$	$6.13 \pm 0.50 \pm 0.19$	16.2
\mathbf{VI}	$D_s^+[D] \to \bar{K}^{*0} K^{*+}$	$1.76 \pm 0.07 \pm 0.03$	$4.00 \pm 0.47 \pm 0.34$	12.5
	$D_s^+ \to \bar{K}^{*0} K^{*+}$		$22.44 \pm 0.81 \pm 0.32$	
VII	$D_s^+ \to \bar{K}_1^0(1270)K^+, \ \bar{K}_1^0(1270) \to K^- \rho^+$	$5.36 \pm 0.06 \pm 0.10$	$9.81 \pm 0.80 \pm 0.46$	>20
	$D_s^+ \to \bar{K}_1^0(1270)K^+, \ \bar{K}_1^0(1270)[S] \to \bar{K}^{*0}\pi^0$		$0.69 \pm 0.13 \pm 0.12$	
	$D_s^+ \to \bar{K}_1^0(1270)K^+, \ \bar{K}_1^0(1270)[S] \to K^{*-}\pi^+$		$1.27 \pm 0.27 \pm 0.25$	
VIII	$D_s^+ \to \bar{K}_1^0(1270)K^+, \ \bar{K}_1^0(1270)[S] \to K^*\pi$	$0.09 \pm 0.14 \pm 0.12$	$1.87 \pm 0.39 \pm 0.36$	7.2
	$D_s^+ \to \bar{K}_1^0(1270)K^+, \bar{K}_1^0(1270)[D] \to \bar{K}^{*0}\pi^0$		$0.22 \pm 0.05 \pm 0.03$	
	$D_s^+ \to \bar{K}^0_1(1270) K^+, \bar{K}^0_1(1270) [D] \to K^{*-} \pi^+$		$0.41 \pm 0.10 \pm 0.05$	
IX	$D_s^+ \to \bar{K}_1^0(1270)K^+, \bar{K}_1^0(1270)[D] \to K^*\pi$	$1.62 \pm 0.15 \pm 0.12$	$0.64 \pm 0.16 \pm 0.08$	5.5
	$D_s^+ \to \bar{K}_1^0(1270)K^+, \ \bar{K}_1^0(1270) \to K^*\pi$		$2.57 \pm 0.42 \pm 0.42$	
	$D_s^+ \to \bar{K}_1^0(1400)K^+, \bar{K}_1^0(1400)[S] \to \bar{K}^{*0}\pi^0$		$2.67 \pm 0.36 \pm 0.17$	
	$D_s^+ \to \bar{K}^0_1(1400) K^+, \ \bar{K}^0_1(1400)[S] \to K^{*-} \pi^+$		$4.90 \pm 0.65 \pm 0.29$	
Х	$D_s^+ \to \bar{K}_1^0(1400)K^+, \ \bar{K}_1^0(1400)[S] \to K^*\pi$	$5.66 \pm 0.08 \pm 0.05$	$7.23 \pm 0.95 \pm 0.41$	12.0
XI	$D_s^+ \to a_0^0(980) \rho^+$	$2.33 \pm 0.10 \pm 0.09$	$1.61 \pm 0.29 \pm 0.21$	6.0
	$D_s^+ \to f_1(1420)\pi^+, f_1(1420) \to K^{*-}K^+$		$0.87 \pm 0.17 \pm 0.07$	
	$D_s^+ \to f_1(1420)\pi^+, f_1(1420) \to K^{*+}K^-$		$0.87 \pm 0.17 \pm 0.07$	
XII	$D_s^+ \to f_1(1420)\pi^+, f_1(1420) \to K^{*\mp}K^{\pm}$	$5.14 \pm 0.10 \pm 0.05$	$1.35 \pm 0.28 \pm 0.11$	6.5
XIII	$D_s^+ \to f_1(1420)\pi^+, f_1(1420) \to a_0^0(980)\pi^0$	$5.77 \pm 0.14 \pm 0.07$	$0.65 \pm 0.24 \pm 0.12$	3.6
XIV	$D_s^+ \to \eta(1475)\pi^+, \eta(1475) \to a_0^0(980)\pi^0$	$0.98 \pm 0.08 \pm 0.06$	$3.28 \pm 0.38 \pm 0.25$	9.7

BF measurement of $D_s^+ \to K^- K^+ \pi^+ \pi^0$

arXiv:2103.02482

- $\mathscr{B}(D_s^+ \to K^- K^+ \pi^+ \pi^0) = (5.42 \pm 0.10 \pm 0.17) \%$
- $\mathscr{B}(D_s^+ \to \phi \rho^+) = (6.22 \pm 0.17 \pm 0.24) \%$ Consistent with theoretical prediction PRD 49, 269(1994)

[19] PRD85, 122002 (2012) [20] PRD95, 072010 (2017)

[22] PRD83, 032005 (2011)

[21] EPJC78, 443 (2018)

[23] NPB187, 1 (1981) [24] JHEP05, 143 (2017)

•
$$\mathscr{B}(D_s^+ \to K^{*+} \bar{K^{*0}}) = (5.46 \pm 0.23 \pm 0.18)\%$$

$$R_{K_{1(1270)}} \equiv \frac{\mathscr{B}(K_1^0 \to K^* \pi)}{\mathscr{B}(K_1^0 \to K \rho)} = (0.99 \pm 0.15 \pm 0.18)\%$$

Our result is consistent with the results measured by LHCb [JHEP02(2019)126] and CLEO [PRD **85**, 122002]

$R_{K_1(1270)}$	Process	Experiment
0.81 ± 0.10	$D^0 \to K^+ K^- \pi^+ \pi^-$	LHCb [19]
1.18 ± 0.43	$D^0 \to K^- K_1^+(1270)$	CLEO [20]
0.11 ± 0.06	$D^0 \to K^+ K_1^-(1270)$	CLEO [20]
0.19 ± 0.10	$D^0 \to K^- \pi^+ \pi^+ \pi^-$	BESIII [21]
0.24 ± 0.04	$D^0 \to K^- \pi^+ \pi^+ \pi^-$	LHCb [22]
0.45 ± 0.05	$B^+ \to J/\psi K^+ \pi^+ \pi^-$	Belle [23] (Fit 1)
0.30 ± 0.04	$B^+ \to J/\psi K^+ \pi^+ \pi^-$	Belle [23] (Fit 2)
0.38 ± 0.13	$K^-p\to K^-\pi^-\pi^+p$	ACCMOR [24]
0.45 ± 0.14	$D^0 \to K^- K_1^+(1270)$	CLEO [25]

Amplitude analysis of $D_s^+ \rightarrow \eta \pi^+ \pi^+ \pi^-$

Observe W-annihilation for $D_s^+ \rightarrow a_0(980)^+ \rho(770)^0$	Amplitude	Phase	FF(%)
	$a_1(1260)^+(ho(770)^0\pi^+)\eta$	0.0(fixed)	$55.4 \pm 3.9 \pm 2.0$
	$a_1(1260)^+(f_0(500)\pi^+)\eta$	$5.0\pm0.1\pm0.1$	$8.1\pm1.9\pm2.1$
c u ⁄a₀(980)⁺	$a_0(980)^+ ho(770)^0$	$2.5\pm0.1\pm0.1$	$6.7\pm2.5\pm1.5$
× W⁺ /_	$\eta(1405)(a_0(980)^-\pi^+)\pi^+$	$0.2\pm0.2\pm0.1$	$0.7\pm0.2\pm0.1$
	$\eta(1405)(a_0(980)^+\pi^-)\pi^+$	$0.2\pm0.2\pm0.1$	$0.7\pm0.2\pm0.1$
D _s d	$f_1(1420)(a_0(980)^-\pi^+)\pi^+$	$4.3\pm0.2\pm0.4$	$1.9\pm0.5\pm0.3$
	$f_1(1420)(a_0(980)^+\pi^-)\pi^+$	$4.3\pm0.2\pm0.4$	$1.7\pm0.5\pm0.3$
s d ρ(770) ^ο	$[a_0(980)^-\pi^+]_S\pi^+$	$0.1\pm0.2\pm0.2$	$5.1\pm1.2\pm0.9$
	$[a_0(980)^+\pi^-]_S\pi^+$	$0.1\pm0.2\pm0.2$	$3.4\pm0.8\pm0.6$
	$[f_0(980)\eta]_S\pi^+$	$1.4\pm0.2\pm0.3$	$6.2\pm1.7\pm0.9$
1306 DT candidates with larger than 85% purity	$[f_0(500)\eta]_S \pi^+$	$2.5\pm0.2\pm0.3$	$12.7\pm2.6\pm2.0$

First measurement:

- $\mathscr{B}(D_s^+ \to \eta \pi^+ \pi^+ \pi^-) = (3.12 \pm 0.13 \pm 0.09)\%$ Dominant process:
- $\mathscr{B}(D_s^+ \to a_1(1260)^+ \eta, a_1(1260)^+ \to \rho^0 \pi^+)$ $= (1.73 \pm 0.14 \pm 0.08)\%$

W-annihilation contribution:

• $\mathscr{B}(D_s^+ \to a_0(980)^+ \rho^+, a_0(980)^+ \to \eta \pi^+)$ $= (0.21 \pm 0.08 \pm \pm 0.05)\%$

Larger than the fractions of most other measured pure W-annihilation decays

130 $a \sqrt{s} = 4.178 \sim 4.226 \text{ GeV}$

1		۵	5
-	-	•	,

Amplitude analysis of $D^+ o K^0_s K^+ \pi^0$

16

- First amplitude analysis
- 692 DT candidates with 97.4% (a) $\sqrt{s} = 3.773$ GeV

Topological diagrams for $D^+
ightarrow K^*(892)^+ K^0_s$

Phys. Rev. D 104, 012006 (2021)

Amplitude analysis of $D^+ \to K^0_s K^+ \pi^0$

A factor of 4.6 improvement for $\mathfrak{B}_{K^*(892)^+K^0_c}$

Amplitude	Magnitude	Phase ϕ (°)	FF (%)	Significance
$D^+ \to K^*(892)^+ K_S^0$	1.0 (fixed)	0.0 (fixed)	57.1 ± 2.6	29.6σ
$D^+ \to \bar{K}^* (892)^0 K^+$	0.41 ± 0.04	162 ± 10	10.2 ± 1.5	11.6σ
$D^+ \to (K^+ \pi^0)_{\mathcal{S}-\text{wave}} K^0_S$	2.02 ± 0.37	140 ± 14	3.9 ± 1.5	5.2σ
$D^+ \to (K^0_S \pi^0)_{S-\text{wave}} K^+$	3.14 ± 0.46	-173.7 ± 9.7	9.7 ± 2.6	7.4σ

BF	This work	PDG
$\frac{\mathcal{B}(D^+ \to K^*(892)^+ (K^+ \pi^0) K_S^0)}{\mathcal{B}(D^+ \to K^+ K_S^0 \pi^0)}$	$(57.1 \pm 2.6_{ m stat.} \pm 4.2_{ m syst.})\%$	
$\frac{\mathcal{B}(D^+ \to \bar{K}^* (892)^0 (\tilde{K}_S^0 \pi^0) K^+)}{\mathcal{B}(D^+ \to K^+ K_S^0 \pi^0)}$	$(10.2 \pm 1.5_{ m stat.} \pm 2.2_{ m syst.})\%$	
$\mathcal{B}(D^+ \rightarrow K^*(892)^+ K^0_S)$	$(8.69 \pm 0.40_{ m stat.} \pm 0.64_{ m syst.} \pm 0.51_{ m Br.}) imes 10^{-3}$	$(17 \pm 8) \times 10^{-3}$
$\mathcal{B}(D^+ \to \bar{K}^*(892)^0 K^+)$	$(3.10 \pm 0.46_{ m stat.} \pm 0.68_{ m syst.} \pm 0.18_{ m Br.}) imes 10^{-3}$	$(3.74^{+0.12}_{-0.20}) \times 10^{-3}$

Before release of this analysis:After this release: accord well4.0σ variationLatest calculated: arXiv: 2014.13548

Model	$ \mathcal{B}(D^+ \to K^*(892)^+ K^0_S)(\times 10^{-3}) $	Mode	\mathfrak{B}_{theory}	\mathfrak{B}_{exp}
Pole	6.2 ± 1.2	$D^+ \rightarrow K^+ \bar{K^{*0}}$	5.92+-0.18	3.71+-0.16
FAT[mix]	5.5 5.02 \pm 1.21	$D^+ \rightarrow \bar{K^0} K^{*+}$	16 28+-0 61	17.6+-1.8
TDA[QCD-penguin]	3.02 ± 1.31 4.90 ± 0.21	DXXX	10.201 0.01	1710 110
PDG	17 ± 8	-		

Our understanding of the charmed dynamics improved

Amplitude analyses of other $D^+/D^0/D_s^+$ Decays

Amplitude analysis of $D^+ \to K_s^0 \pi^+ \pi^+ \pi^-$ PRD 100, 072008(2019) Amplitude analysis of $D^0 \to K^- \pi^+ \pi^0 \pi^0$ PRD 99, 092008(2019) Amplitude analysis of $D_s^+ \to \pi^+ \pi^0 \eta$ PRL 123, 112001 (2019) Amplitude analysis of $D^0 \to K^- \pi^+ \pi^+ \pi^-$ PRD 95, 072010(2017) Amplitude analysis of $D_s^+ \to \pi^+ \pi^+ \pi^-$ BESIII Preliminary

Summary

19

- Amplitude analyses and BF measurements of:
 - $D_s^+ \to K^- K^+ \pi^+$ $\mathscr{B} = (5.47 \pm 0.08 \pm 0.13)\%$

•
$$D_s^+ \to K_s^0 \pi^+ \pi^0$$
 $\left[\mathscr{B} = (5.43 \pm 0.30 \pm 0.15) \times 10^{-3} \right]$ (No evidence of CPV)

- $D_s^+ \to K_S^0 K^- \pi^+ \pi^+$ $\mathscr{B} = (1.46 \pm 0.05 \pm 0.05)$
- $D_s^+ \to K^- K^+ \pi^+ \pi^0$ $\mathscr{B} = (5.42 \pm 0.10 \pm 0.17)\%$
- $D_s^+ \to \eta \pi^+ \pi^+ \pi^ \mathscr{B} = (3.12 \pm 0.13 \pm 0.09)\%$
- $D^+ \rightarrow K^0_s K^+ \pi^0$

• Precise measurements of two-body decays:

•
$$\mathscr{B}(D_s^+ \to \phi \pi^+) = (4.60 \pm 0.17)\%$$

• $\mathscr{B}(D_s^+ \to \bar{K}^*(892)^0 K^+) = (3.94 \pm 0.12)\%$
• $\mathscr{B}(D_s^+ \to \phi \rho) = (6.22 \pm 0.17 \pm 0.24)\%$
• $\mathscr{B}(D_s^+ \to K_s^0 \rho^+) = (5.46 \pm 0.84 \pm 0.44) \times 10^{-3}$
• $\mathscr{B}(D_s^+ \to K^{*0} \pi^+) = (2.71 \pm 0.72 \pm 0.30) \times 10^{-3}$
• $\mathscr{B}(D_s^+ \to K^{*+} \pi^0) = (0.75 \pm 0.24 \pm 0.06) \times 10^{-3}$
• $\mathscr{B}(D_s^+ \to K^{*+} \bar{K}^{*0}) = (5.46 \pm 0.23 \pm 0.18)\%$
• $\mathscr{B}(D^+ \to K^{*0} K^+) = (2.71 \pm 0.72 \pm 0.30) \times 10^{-3}$
• $\mathscr{B}(D_s^+ \to K^{*0} K^+) = (2.71 \pm 0.72 \pm 0.30) \times 10^{-3}$
• $\mathscr{B}(D_s^+ \to K^{*+} \bar{K}^{*0}) = (8.69 \pm 0.64 \pm 0.51) \times 10^{-3}$ Anomaly

Thank you!

back up

Amplitude analysis of $D_s^+ o \pi^+ \pi^0 \eta$

%

1239 DT events with purity of 97.7% $@\sqrt{s} = 4.178$ GeV

•
$$\mathscr{B}(D_s^+ \to \pi^+ \pi^0) = 3.4 \times 10^{-4}$$

• $\mathscr{B}(D_s^+ \to \pi^+ \rho^0) < (1.9 \pm 1.2) \times 10^{-4}$
• $\mathscr{B}(D_s^+ \to \pi^+ \pi^0 \eta) = (9.50 \pm 0.28 \pm 0.41)$

•
$$\mathscr{B}(a_0(980)^{+(0)}\pi^{0(+)}) = (2.20 \pm 0.22 \pm 0.34)\%$$

The BFs of $D_s^+ \rightarrow a_0(980)^{+(0)}\pi^{0(+)}$ are significantly larger than BFs of pure annihilation processes by 2 orders of magnitude.

$$\chi^2$$
/ndf = 82.8/77

Significance > 5σ