



# Spectroscopy and decays of b-hadrons at LHCb

#### Sara Mitchell

#### on behalf of the LHCb collaboration

HADRON: July 2021

#### Introduction

- Over the past 10 years the LHC has discovered 59 new hadrons, mainly from LHCb.
- The discovery of new particles provides valuable information on probing the limits of the quark model.

Could provide a deeper understanding of the hadronic structure.

 Studying heavy flavour spectroscopy allows us to further our understanding of how conventional hadrons, tetraquarks and pentaquarks are formed.

Sara Mitchell



59-new-hadrons



Sara Mitchell

#### **Recent Results**

- Observation of the excited  $\Omega_c^0$  baryons in  $\Omega_b^- \to \Xi_c^+ K^- \pi^-$  decays LHCb-PAPER-2021-012 (submitted to PRD Lett: arXiv:2107.03419)
- Observation of two new excited  $\Xi_b^0$  states decaying to  $\Lambda_b^0 K^- \pi^+$  New result! LHCb-PAPER-2021-025
- Observation of the decay  $\Lambda_b^0 \rightarrow \chi_{c1} p \pi^-$ LHCb-PAPER-2021-003 (published in JHEP: JHEP 05 (2021) 95 )
- Search for doubly heavy baryons  $\Xi_{bc}^0$  and  $\Omega_{bc}^0$  decaying to  $\Lambda_c^+\pi^-$  and  $\Xi_c^+\pi^-$ LHCb-PAPER-2021-002 (accepted by Chin. Phys. C: <u>arXiv:2104.04759</u>)

#### Observation of excited $\Omega_c^0$ baryons in $\Omega_b^- \to \Xi_c^+ K^- \pi^-$ decays



LHCb-PAPER-2021-012 Observation of  $\Omega_h^- \to \Xi_c^+ K^- \pi^$ arXiv:2107.03419

- In 2017 there was an observation of five new resonances of  $\Omega_c^0$  (css) decaying as  $\Omega_c^{**0} \to \Xi_c^+ K^-$ : Phys. Rev. Lett. 118 (2017) 182001 Now cited over 200 times!
- A way to determine the quantum numbers is from studying the decay of a known hadron ( $\Omega_{h}^{-}$ ) into these excited states.

Signal Decay:  $\Omega_b^- \to \Xi_c^+ K^- \pi^-$ 



- First observation of  $\Omega_b^- \to \Xi_c^+ K^- \pi^-$ .
- Branching fraction relative to  $\Omega_h^- \to \Omega_c^0 \pi^$ is measured.

 $\frac{\mathscr{B}(\Omega_b^- \to \Xi_c^+ K^- \pi^-) \mathscr{B}(\Xi_c^+ \to p K^- \pi^+)}{\mathscr{B}(\Omega_b^- \to \Omega_c^0 \pi^-) \mathscr{B}(\Omega_c^0 \to p K^- K^- \pi^+)} = 1.35 \pm 0.11 \pm 0.05$ 

• Mass measurement from this analysis:

 $m(\Omega_{h}^{-}) = 6044.3 \pm 1.2 \pm 1.1 \text{ MeV}$ 

• Averaging all LHCb measurements gives:

 $m(\Omega_{h}^{-}) = 6044.8 \pm 1.3 \text{ MeV}$ 

## Observation of the Excited $\Omega_c^0$ States

- Four signals are consistent with those of the previously observed  $\Omega_c(3000)^0$ ,  $\Omega_c(3050)^0$ ,  $\Omega_c(3065)^0$ and  $\Omega_c(3090)^0$  baryons.
- Modelled with a relativistic Breit
  Wigner (S-wave) convolved with a
  Gaussian. Threshold modelled
  with S-wave Breit Wigner.

Production fraction:

Resonance

 $\Omega_{c}(3000)^{0}$ 

 $\Omega_{c}(3050)^{0}$ 

 $\Omega_{c}(3065)^{0}$ 

 $\Omega_{c}(3090)^{0}$ 

$$\mathsf{P} \equiv \frac{\mathscr{B}(\Omega_b^- \to \Omega_c^{**0} \pi^-) \mathscr{B}(\Omega_c^{**0} \to \Xi_c^+ K^-)}{\mathscr{B}(\Omega_b^- \to \Xi_c^+ K^- \pi^-)}$$

**Prompt analysis:** 

Mass [MeV]

3000.4 ± 0.2 ± 0.1

 $3050.2 \pm 0.1 \pm 0.1$ 

 $3065.6 \pm 0.1 \pm 0.3$ 

 $3090.2 \pm 0.3 \pm 0.5$ 



7.4 ± 3.1 ± 2.8

 $0.19 \pm 0.02 \pm 0.04$ 

LHCb-PAPER-2021-012

8.7 ± 1.0 ± 0.8

3091.0 ± 1.1 ± 1.0

## Observation of the Excited $\Omega_c^0$ States



• Enhancement seen at  $\Xi_c^+ K^-$  threshold with a significance larger than  $4\sigma$ , further studies needed to determine its nature. A similar structure was seen in the inclusive  $\Xi_c^+ K^-$  spectrum and was interpreted as the partially reconstructed decay  $\Omega_c(3065)^0 \rightarrow \Xi_c^{'+}(\to \Xi_c^+ \gamma) K^-$ .

• This interpretation has been ruled out in this analysis due to cuts on the  $\Omega_b^-$  mass.

## Observation of the Excited $\Omega_c^0$ States

• Three-body decay provides a way to determine the quantum numbers by exploiting angular distributions.



- The spin of a state is determined by comparing the value of the observable with the expected values under different hypotheses.
- $\Omega_c(3050)^0$  and  $\Omega_c(3065)^0$  are not spin-1/2 with 2.2 $\sigma$  and 3.6 $\sigma$  significance.

• Reject common interpretation of spin assignment J = 1/2, 1/2, 3/2, 3/2 with  $3.5\sigma$  significance.

# Observation of two new excited $\Xi_b^0$ states decaying to $\Lambda_b^0 K^- \pi^+$



### Observation of the excited $\Xi_b^0$ states

- Several excited  $\Lambda_b^0$  states have been observed, leading to the investigation of the excited  $\Xi_b$  states due to their similar properties.
  - $\begin{array}{c} \Lambda_{b}(5920)^{0} \\ \Lambda_{b}(5912)^{0} \\ \Lambda_{b}(6072)^{0} \\ \Lambda_{b}(6072)^{0} \\ \Lambda_{b}(6146)^{0} \\ \Lambda_{b}(6152)^{0} \end{array}$ Recently the LHCb collaboration reported the observation of the  $\Xi_{b}(6227)^{-}$ baryon and its isospin partner  $\Xi_{b}(6227)^{0}$ .  $\begin{array}{c} Phys. Rev. Lett. 121 (2018) 072002 \\ Phys. Rev. D 103 (2021) 012004 \\ \Xi_{b}(6227)^{-} \rightarrow \Lambda_{b}^{0}K^{-} \qquad \Xi_{b}(6227)^{-} \rightarrow \Xi_{b}^{0}\pi^{-} \qquad \Xi_{b}(6227)^{0} \rightarrow \Xi_{b}^{-}\pi^{+} \\ & \text{The CMS collaboration reported an observation of the } \Xi_{b}(6100)^{-} \text{ baryon.} \\ Phys. Rev. Lett. 126 (2021) 252003 \\ \end{array}$

• Two 1D  $\Xi_b^0$  states are predicted with decays dominated by the  $\Sigma_b^{(*)}K$  and  $\Xi_b^{*,'}\pi$  modes.

Sara Mitchell



### Observation of the excited $\Xi_b^0$ states

- Candidates with mass in a 2.5 $\sigma$  window around the  $\Lambda_b^0$  mass are used to form  $\Lambda_b^0 K^- \pi^+$ .
- To estimate the background generated from random combinations, the wrong sign candidates are reconstructed with a  $\Lambda_b^0 K^+ \pi^-$  final state.





12

LHCb-PAPER-2021-025

#### Observation of the excited $\Xi_b^0$ states

- Resonance structures in excited  $\Xi_b^0$  decays are studied by performing many  $\Lambda_b^0 K^- \pi^+$  mass fits in 5 MeV wide slices of the  $\Lambda_b^0 \pi^+$  mass spectrum.
- Mass and width parameters of the two  $\Xi_b^0$  states are fixed to the nominal fit values.

Signal yield of the  $\Xi_b(6327)^0$  and  $\Xi_b(6333)^0$  states as a function of the  $\Lambda_b^0 \pi^+$  mass:  $\Xi_b(6327)^0\to \Sigma_b^+(\to\Lambda_b^0\pi^+)K^ \Xi_b(6333)^0 \to \Sigma_b^{*+}(\to \Lambda_b^0\pi^+)K^-$ Yield / (5 MeV) <sup>10</sup> <sup>10</sup> <sup>10</sup> <sup>10</sup> <sup>10</sup> Yield / (5 MeV) LHCb 5.7 fb<sup>-1</sup> LHCb 5.7 fb<sup>-1</sup> Preliminary Data Data Total fit Total fit Preliminary NR ..... NR 40 10 20 5780 580 5820 5840 5780 5800 5820 5840 5760 5760  $m(\Lambda_b^0\pi^+)$  [MeV]  $m(\Lambda_b^0\pi^+)$  [MeV] A large fraction of the  $\Xi_b(6333)^0$  baryons  $\Sigma_{h}^{+} \rightarrow \Lambda_{h}^{0} \pi^{+}$  contributes to decay without  $\Lambda_{b}^{0}\pi^{+}$  resonances. most of the  $\Xi_{h}(6327)^{0}$  decays.

• Resonance structures consistent with the theoretical predictions to the 1D excited  $\Xi_b^0$  doublets.

# Observation of the decay $\Lambda_b^0 \rightarrow \chi_{c1} p \pi^-$



## Observation of the decay $\Lambda_b^0 \xrightarrow{arXiv:2103.04949}{\chi_{c1}p\pi}$

- Hidden-charm pentaquarks have been found in the  $J/\psi p$  system of the beauty-baryon decays  $\Lambda_b^0 \rightarrow J/\psi p K^-$ .
- Evidence for a pentaquark contribution in the same  $J/\psi p$  mass region was found in the study of the  $\Lambda_b^0 \to J/\psi p \pi^-$  decay.

• Hidden-charm pentaquarks have only been observed in the  $J/\psi p$  and  $J/\psi \Lambda$  systems, motivating the investigation into other systems, such as  $\eta_c p$ ,  $\chi_{c1} p$  and  $\chi_{c2} p$ .

Normalisation mode:  $\Lambda_b^0 \to \chi_{c1,2} (\to J/\psi \gamma) p K^-$ 

Cabibbo-suppressed Signal mode:  $\Lambda_b^0 \rightarrow \chi_{c1,2} (\rightarrow J/\psi\gamma) p\pi^-$ 

• The normalisation mode is used to determine the ratio of branching fractions:

$$\mathcal{R}_{\pi/K} \equiv \frac{\mathcal{B}(\Lambda_b^0 \to \chi_{c1} p \pi^-)}{\mathcal{B}(\Lambda_b^0 \to \chi_{c1} p K^-)} \qquad \mathcal{R}_{2/1}^{\pi} \equiv \frac{\mathcal{B}(\Lambda_b^0 \to \chi_{c2} p \pi^-)}{\mathcal{B}(\Lambda_b^0 \to \chi_{c1} p \pi^-)} \qquad \mathcal{R}_{2/1}^{K} \equiv \frac{\mathcal{B}(\Lambda_b^0 \to \chi_{c2} p K^-)}{\mathcal{B}(\Lambda_b^0 \to \chi_{c1} p K^-)}$$



## Observation of the decay $\Lambda_b^0 \xrightarrow{arXiv:2103.04949}{\chi_{c1}p\pi}$

- Each signal component is described by the sum of two Crystal Ball functions with a common mean, with the ratio of the widths and the tail parameters fixed by simulation.
- The significance of  $\Lambda_b^0 \to \chi_{c1,2} p \pi^-$  is estimated from Wilks' theorem and the significance of  $\Lambda_b^0 \to \chi_{c2} p \pi^-$  is tested by simulating a large number of pseudoexperiments.



Sara Mitchell

Statistical significance is found to be 9.6 $\sigma$ and 3.8 $\sigma$  for  $\Lambda_b^0 \rightarrow \chi_{c1} p \pi^-$  and  $\Lambda_b^0 \rightarrow \chi_{c2} p \pi^-$  respectively.

$$N(\Lambda_b^0\to\chi_{c1}p\pi^-)=105\pm16$$

$$N(\Lambda_b^0 \to \chi_{c2} p \pi^-) = 51 \pm 16$$

### Observation of the decay $\Lambda_b^0 \xrightarrow{arXiv:2103.04949}{\chi_{c1}p\pi}$

 Each signal component of the normalisation channel is modelled in the same way as the signal mode.

 $N(\Lambda_b^0 \to \chi_{c1} p K^-) = 3133 \pm 75$ 

$$N(\Lambda_b^0 \to \chi_{c2} p K^-) = 1766 \pm 71$$

Branching fractions:

Sara Mitchell

$$R_{\pi/K} = (6.59 \pm 1.01 \pm 0.22) \times 10^{-2}$$
$$R_{2/1}^{\pi} = 0.95 \pm 0.30 \pm 0.04 \pm 0.04$$
$$R_{2/1}^{K} = 1.06 \pm 0.05 \pm 0.04 \pm 0.04$$



• Background subtracted  $\chi_{c1}p$ ,  $\chi_{c1}\pi^-$  and  $p\pi^-$  distributions from the  $\Lambda_b^0 \rightarrow \chi_{c1}p\pi^-$  decay are investigated and consistent with the phase space model. No evidence for exotic states is found.

#### Search for doubly heavy baryons $\Xi_{bc}^{0}$ and $\Omega_{bc}^{0}$ decaying to $\Lambda_{c}^{+}\pi^{-}$ and $\Xi_{c}^{+}\pi^{-}$



#### Doubly heavy baryons: $\Xi_{bc}^0 / \Omega_{bc}^0$

- To date, no baryons containing one b and one c quark have been observed experimentally.
- This is the first search for the  $\Omega_{bc}^0$  baryon at LHCb and a new search for the  $\Xi_{bc}^0$  baryon, both decay to  $\Lambda_c^+\pi^-$  and  $\Xi_c^+\pi^-$ . Previous search:  $\Xi_{bc}^0 \to D^0 p K^-$

**Production ratios:** 









Sara Mitchell



LHCb-PAPER-2021-002

arXiv:2104.04759

JHEP11(2020)095

#### Doubly heavy baryons: $\Xi_{bc}^0 / \Omega_{bc}^0$

• No significant signal excess is seen, upper limits at 95% confidence level are set on the ratios  $R(\Lambda_c^+\pi^-)$  and  $R(\Xi_c^+\pi^-)$ .



• The assumed mass of  $\Xi_{bc}^0$  is varied from 6700 to 7300 MeV with a step size of 4 MeV, and its lifetime is varied from 0.2 to 0.4 ps.



LHCb-PAPER-2021-002

arXiv:2104.04759

Sara Mitchell

#### Summary

- Lots of new particles and excited states have been discovered at LHCb!
- First observation of the decay  $\Omega_b^- \to \Xi_c^+ K^- \pi^-$ .
- Precise measurement of the  $\Omega_b^-$  mass:  $m(\Omega_b^-) = 6044.8 \pm 1.3$  MeV.
- Four excited  $\Omega_c^0$  states observed with a significance over  $6\sigma$ . Rejected common interpretation of spin assignment J = 1/2, 1/2, 3/2, 3/2 with  $3.5\sigma$  confidence.
- Two excited  $\Xi_b^0$  states are observed with a significance over  $9\sigma$  (compared to no peak hypothesis) and  $5\sigma$  (compared to one-peak hypothesis).
  - Properties are in good agreement with the theoretical predictions of the 1D excited  $\Xi_b^0$  doublet.
- First observation of the decay  $\Lambda_b^0 \to \chi_{c1} p \pi^-$  with a significance of over  $9\sigma$ . Evidence is found for the  $\Lambda_b^0 \to \chi_{c2} p \pi^-$  decay with a significance of  $3.8\sigma$ .
- Upper limits on R at 95 % confidence level are found for  $\Xi_{bc}^0$  and  $\Omega_{bc}^0$ .

#### Thanks for Listening!

