

Predicting the production of loosely bound di-baryons in bottomonium decays

Davide Marietti	(University of Turin)
Dr. Umberto Tamponi	(INFN Turin)
Prof. Alessandro Pilloni	(University of Messina

28/07/2021

(Based on a paper in preparation)

Introduction

I will present new results from a **phenomenological study** on loosely-bound molecules formation in Υ decays and e^+e^- collisions at $\sqrt{s} = 10.58$ GeV, focusing on:

- deuteron (pn bound state)
- H-dibaryon (AA bound state)

Description of (anti)deuteron production in HEP processes \rightarrow coalescence model. Understanding deuteron production has several fundamental consequences both in particle and astroparticle physics. Recently, more refined models have been suggested.

Deuteron as a benchmark for hadronic molecules

Hadronic molecules are composite systems made of hadrons bound together via strong interaction \rightarrow fundamental to understand strong interaction beyond the quark model.

- Hadronic molecules share universal properties [1]
- Deuteron is the best known hadronic molecule → ideal benchmark for characterizing the main features of loosely-bound molecules in the simplest framework

Goal

Understanding deuteron formation gives important information about other molecules less known \rightarrow make predictions about H-dibaryon production rate.

[1] Feng-Kun Guo et al., "Hadronic molecules", Reviews of Modern Physics 90 (2018).

Phenomenological models regarding \bar{d} production

Simple coalescence model [2][3]

$$P(pn \to dX \mid k) = \Theta(k_{cut} - k) = \begin{cases} 1 & k < k_{cut} \\ 0 & k > k_{cut} \end{cases}$$

Cross section based model [4]

$$P(pn \rightarrow dX \mid k) = rac{\sigma_{pn \rightarrow dX}(k)}{\sigma_0}$$

Advanced coalescence model [5]

$$P(pn \rightarrow dX \mid k) = 3(\zeta_1(\sigma)\Delta e^{-k^2d_1^2} + \zeta_2(\sigma)(1-\Delta)e^{-k^2d_2^2})$$

Common features:

- single free parameter $(k_{cut}, \sigma_0, \sigma)$
- \bar{d} production depends on a formation probability function of $k = \frac{1}{2}(p_p p_n)|_{COM}$
- they must be fitted on experimental data to be predictive

[2] G. Gustafson and J. Häkkinen, Z. Phys. C Particles and Fields 61, (1994),
 [3] P.
 [4] L. A. Dal and A. R. Raklev, Phys. Rev. D 91, 123536 (2015),
 [5] M

- [3] P. Artoisenet and E. Braaten, Physical Review D 83 (2011),
- [5] M. Kachelriess et al., J. Eur. Phys. J. A 56, 4 (2020).

- The simple coalescence model reveals a strong process dependence
- The more refined models aim at solving this problem. Do they succeed?

Experiment	${\cal B}(\Upsilon(1S) o ar d X)$	$\mathcal{B}(\Upsilon(2S) o ar{d}X)$	$\mathcal{B}(\Upsilon(3S) o ar{d}X)$	$\frac{\sigma(e^+e^- \to \bar{d}X)}{\sigma(e^+e^- \to hadrons)}$		
BaBar [6]	$(2.81\pm0.49^{+0.20}_{-0.24})\times10^{-5}$	$(2.64\pm 0.11^{+0.26}_{-0.21})\times 10^{-5}$	$(2.33\pm0.15^{+0.31}_{-0.28})\times10^{-5}$	$(3.01\pm0.13^{+0.37}_{-0.31})\times10^{-6}$		
CLEO [7]	$(2.86\pm 0.19\pm 0.21)\times 10^{-5}$			$< 10^{-5}$		

Available experimental measurements in the bottomonium region:

Our knowledge of \bar{d} production in the bottomonium region is still **incomplete**:

	${\cal B}[\Upsilon(1S) o ar dX]$	${\cal B}[\Upsilon(2S) ightarrow ar{d}X]$	${\cal B}[\Upsilon(3S) o ar dX]$	$rac{\sigma(e^+e^- ightarrow ar{d}X)}{\sigma(e^+e^- ightarrow hadrons)}$
Simple coalescence model	\checkmark	×	×	1
Cross section based model	\checkmark	×	×	\checkmark
Advanced coalescence model	×	×	×	×

Goal

The first comprehensive study of \overline{d} production in the bottomonium region.

[6] J. P. Lees et al. (BaBar Collab.), Phys. Rev. D 89, 111102 (2014), [7] D. M. Asner et al. (CLEO Collab.), Phys. Rev. D 75, 012009 (2007). 5

Monte Carlo generators

To get the two-nucleon spectra we have to rely on MC simulations. Both Υ decays and $e^+e^- \rightarrow q\bar{q}$ events are generated using Pythia8.

Pythia8:

- simulates the **fragmentation** \rightarrow explained and parametrized by the "Lund string model"
- comes with a default version \rightarrow parameters optimized to simulate the majority of processes

We know that:

- Several papers suggest to tune the MC specifically toward \bar{d} production
- Pythia8 default version cannot well describe the $\Upsilon
 ightarrow ggg$ decays

Tuning Pythia8 toward \bar{d} production and Υ decays \rightarrow **Grid tuning**.

Tuning of Pythia8

We exploited all the relevant experimental data to perform the grid tuning:

- the ggg/qq
 enhancement of p
 , p, Λ, φ as a function of the scaled momentum (p/E_{beam})
 R. A. Briere et al. (CLEO Collab.), Phys. Rev. D 76, 012005 (2007)
- the single hadron differential cross sections
 - R. Seidl et al. (Belle Collab.), Phys. Rev. D 92, 092007 (2015)
 - R. Seidl et al. (Belle Collab.), Phys. Rev. D 101, 092004 (2020)
- the total cross sections of hyperons and charmed baryons
 - M. Niiyama et al. (Belle Collab.), Phys. Rev. D 97, 072005 (2018)

Pythia8 parameters optimized in the grid tuning:

StringZ:aLund=0.22
StringZ:bLund=1.35
StringZ:aExtraDiquark=1.05
StringPT:sigma=0.238
StringFlav:probQQtoQ=0.091
<pre>StringFlav:probStoUD=0.32</pre>
StringFlav:probSQtoQQ=1.0

Study on antideuteron production

Given the programs and the tuned MC \rightarrow the models are fitted on available data.

Experiment	${\cal B}(\Upsilon(1S) o ar dX)$	${\cal B}(\Upsilon(2S) o ar dX)$	${\cal B}(\Upsilon(3S) o ar dX)$	$\frac{\sigma(e^+e^- \to \bar{d}X)}{\sigma(e^+e^- \to hadrons)}$		
BaBar [6]	$(2.81\pm0.49^{+0.20}_{-0.24})\times10^{-5}$	$(2.64\pm0.11^{+0.26}_{-0.21})\times10^{-5}$	$(2.33\pm 0.15^{+0.31}_{-0.28})\times 10^{-5}$	$(3.01\pm 0.13^{+0.37}_{-0.31})\times 10^{-6}$		
CLEO [7]	$(2.86\pm0.19\pm0.21)\times10^{-5}$			$< 10^{-5}$		

We have generated a MC data sample made by:

• 5×10^7 events of $\Upsilon(1S)$, $\Upsilon(2S)$, $\Upsilon(3S)$ decays

•
$$10^8$$
 events of $e^+e^-
ightarrow q ar q$ at $\sqrt{s}=10.58~{
m GeV}$

We required that \bar{p} and \bar{n} must be close "enough" in coordinate space,

- including those directly produced or produced in strong decay, e.g. from Δ decay
- removing those produced in weak decays, *e.g.* from Λ , Σ^{\pm} , Λ_c^+ , Ξ_c^+ , Ξ_c^0 decays

The scan procedure

We performed a scan of the free parameter followed by a χ^2 minimization.

Best-fit value and associated error of the free parameter \rightarrow fits and interpolations.

The scan procedure

				First extra	iction
Model	$\Upsilon(1S) o ar{d} X$	$\Upsilon(2S) o ar{d} X$	$\Upsilon(3S) o ar{d}X$	$e^+e^- ightarrow ar{d} X$	
Simple coalescence (k_{cut})	75.1 ^{+2.4} _{-2.3} MeV 74.3 ^{+2.8} _{-2.6} MeV 71.6 ^{+2.0} _{-2.9} MeV		63.8 ^{+3.2} MeV		
		00.0 _{_3.0} met			
Cross section based $\left(\frac{1}{\sigma_0}\right)$	$1.87^{+0.22}_{-0.17} \ b^{-1}$	$1.74^{+0.19}_{-0.16}\ b^{-1}$	$1.57^{+0.16}_{-0.21}\ b^{-1}$	1 13 ^{+0.14} b ⁻¹	
		1.13_0.16 D			
Advanced coalescence (σ)	$8.00^{+0.29}_{-0.24}~{\rm GeV^{-1}}$	$8.19^{+0.34}_{-0.32}~{\rm GeV^{-1}}$	$8.51^{+0.45}_{-0.43}~{\rm GeV^{-1}}$	9 54 ^{+0.48} GeV ⁻¹	
	$8.18^{+0.21}_{-0.14} \text{ GeV}^{-1}$			5.54 _{-0.44} Gev	

[2] G. Gustafson and J. Häkkinen, Z. Phys. C Particles and Fields 61, (1994),
 [4] L. A. Dal and A. R. Raklev, Phys. Rev. D 91, 123536 (2015),

[3] P. Artoisenet and E. Braaten, Physical Review D 83 (2011),
 [8] A. Ibarra and S. Wild, J. Cosmol. Astropart. Phys. 21 (2013).

The three models show a similar behaviour \rightarrow no clear winner,

- they cannot include the e^+e^- process in a unified treatment
- the "factorization hypothesis" do not hold \rightarrow the initial parton state affects \vec{d} formation

Antideuteron momentum spectrum

 \rightarrow No reasons to consider models more refined than the simple coalescence one.

The deuteron-antideuteron associated production

Models with predictive power \rightarrow first prediction of $d\bar{d}$ associated production rate.

- $d\bar{d}$ production \rightarrow sensitive to effects beyond the coalescence process
- the CLEO collab. made a first rough estimation [3] $\rightarrow \frac{\mathcal{B}(\Upsilon(1S) \rightarrow d\bar{d}X)}{\mathcal{B}(\Upsilon(1S) \rightarrow d\bar{d}X)} \approx (9 \pm 6) \times 10^{-3}$

Predictions:

[3] P. Artoisenet and E. Braaten, Physical Review D 83 (2011).

Predictions on H-dibaryon

- H-dibaryon was proposed in 1977 as a $\Lambda\Lambda$ long lived deeply-bound state with $B_H pprox$ 80 MeV
- "Nagara event" [9] \rightarrow excluded a deeply-bound H-dibaryon: $B_H < 7.66$ MeV
- H-dibaryon remains a puzzle: several LQCD predictions but no experimental signals observed

The Belle collab. has recently reported an analysis based on $10^8 \Upsilon(15,25)$ decays [10] and they set a 90% C.L. upper limit on H-dibaryon production rate:

$2m_{\Lambda}-m_{H}$ [MeV]	2	6	10	14	18	22	26	30
$\mathcal{B}(\Upsilon(15,25) ightarrow HX)\mathcal{B}(H ightarrow \Lambda ho \pi^{-})(imes 10^{-7})$	15.0	9.7	7.1	6.3	1.5	5.2	1.7	4.6

How strong are these limits? No predictions are available...

(Note: see B. Scavino's talk at HADRON2021 on Belle II perspectives on deeply-bound dibaryons)

Our predictions vs Belle upper limits

We extended the simple coalescence model to H-dibaryon to make novel predictions.

- for deuteron: $(2k_{cut})^3 \approx \frac{36}{\sqrt{\pi}} \sigma^{-2} \sqrt{m_p B_d} \rightarrow \sigma = 3.36^{+0.09}_{-0.10} \text{ fm}$
- for H-dibaryon: $(2k_{cut})^3 \approx \frac{45}{\sqrt{\pi}}\sigma^{-2}\sqrt{m_{\Lambda}B_H}$, if $B_H \lesssim 1/(m_{\Lambda}\sigma^2) = 3.2$ MeV

Systematic errors

Systematic error on MC generator:

- our grid tuning includes data about Λ enhancement
- additional information about ΛΛ spectrum from Belle collab. [10]
- \rightarrow expected to be small.

Systematic error on σ :

- the H-dibaryon production rate depends strongly on σ value
- we fixed σ = 3.36 fm, but it is constrained to [2, 5] fm
- \rightarrow expected to be **dominant**.

Belle U.L. is not strong enough \rightarrow a higher statistical analysis at Belle II is suggested.

Conclusions

Results:

- First comprehensive study of \bar{d} production in the bottomonium region
 - a unified treatment in the bottomonium region is not possible
 - · all the models show a dependence from the initial partonic state
 - the simple coalescence model is still the best one
- We report the first prediction of $d\bar{d}$ production rate
- We report the first prediction of H-dibaryon production rate
- $\bullet\,$ The current upper limits are not strong enough \rightarrow future analysis at Belle II

Thank you

Antideuteron in Astrophysics

$\bar{d} \rightarrow$ ultra-low background detection channel for **dark matter indirect searches** [1].

- Uncertainties in the \bar{d} flux bounds from DM models \rightarrow the antideuteron Formation Model
- Understanding \bar{d} production at colliders \rightarrow reducing the uncertainty on flux predictions

[1] F. Donato, N. Fornengo, P. Salati, Phys. Rev. D62, 043003 (2000).

The Tuning Strategy

Tunneling probability

The probability to generate the $q_i \bar{q}_i$ pairs that lead to string break-ups is given by:

Prob.
$$\propto \exp\left(-\frac{\pi m^2}{k}\right) + \exp\left(-\frac{\pi p_{\perp}^2}{k}\right),$$

where k is the string tension, while p_{\perp} and m are assumed the same for the $q_i \bar{q}_i$ pair.

 $SU(3)_F$ symmetry is unbroken $\rightarrow u\bar{u}$: $d\bar{d}$: $s\bar{s} = 1$: 1 : γ_s , with $\gamma_s = 0.3$ by default.

Tuning of Pythia8

Lund symmetric fragmentation function

The longitudinal component of the energy carried by a hadrons formed in the string-breaking process string \rightarrow hadron + string' is:

$$f(z) \propto rac{(1-z)^a}{z} \exp\Bigl(rac{-bm_{\perp}^2}{z}\Bigr),$$

where z is the energy carried by the (ij) hadron, $m_{\perp}^2 = m_{had}^2 + p_{\perp,had}^2$ is the transverse mass of the produced (ij) hadron and a and b are free parameters.

- large $a \rightarrow$ suppressed hard region, $z \rightarrow 1$ and $f(z) \approx (1/z) \exp(-bm_{\perp}^2/z)$
- large $b \rightarrow$ suppressed soft region, $z \rightarrow 0$ and $f(z) \approx (1-z)^a$

Default vs Tuning settings

Default vs Tuning settings

It is a **phenomenological model** which harks back to the 1960s [3][4]. While slightly modified over the years, it has been tested for decades and it is still state-of-the-art.

The invariant production rate

In coalescence processes, light nuclei formation is generally described by

$$E_A \frac{d^3 N_A}{dp_A^3} = B_A \left(E_p \frac{d^3 N_p}{dp_p^3} \right)^Z \left(E_n \frac{d^3 N_n}{dp_n^3} \right)^N. \tag{1}$$

In e^+e^- collisions, one usually imposes the **coalescence condition** in momentum space, requiring that the relative momentum of nucleons in their CoM system is smaller than some critical value p_0 , which is the free parameter of the model.

In the limit of isotropic and equal proton and neutron yields, the so-called **coalescence momentum** p_0 is related to B_A via

$$B_A = A \left(\frac{4\pi}{3} \frac{p_0^3}{m_N}\right)^{A-1},$$
 (2)

where m_N denotes the nucleon mass.

^[3] S. T. Butler and C. A. Pearson, Phys. Rev. 129, 836 (1963)

^[4] A. Schwarzschild and C. Zupancic, Phys. Rev. 129, 854 (1963).

The Simple Coalescence Model

Focusing on deuteron formation [5],

$$E_{d} \frac{d^{3} N_{d}}{d p_{d}^{3}} = B_{d} E_{p} \frac{d^{3} N_{p}}{d p_{p}^{3}} E_{n} \frac{d^{3} N_{n}}{d p_{n}^{3}} = B_{d} E \frac{m_{p}}{8} \frac{d^{6} N_{d}}{d^{3} p d^{3} k} \bigg|_{\bar{k} = \bar{0}},$$
(3)

where

$$\bar{k} = \frac{\bar{\rho}_p - \bar{\rho}_n}{2} \bigg|_{pn-CoM} \tag{4}$$

A deuteron is formed if the nucleons of the *pn*-pair have $|\bar{k}| < k_{cut}$, and

•
$$B_d \frac{m_p}{8} = \frac{4\pi}{3} k_{cut}^3$$
 and $\bar{p}_0 = 2\bar{k}_{cut}$

- The deuteron spectrum scales roughly as k_{cut}^3 ,
- Factorised approximation \rightarrow the momentum correlations between nucleons are not included.

The formation probability

Given a proton and a neutron, their probability to form a deuteron is equal to

$$P(pn \to d\gamma | k) = \Theta(k_{cut} - k) = \begin{cases} 1 & k < k_{cut}, \\ 0 & k > k_{cut}. \end{cases}$$
(5)

Where k_{cut} (or $p_0 = 2k_{cut}$) is the free parameter of the model.

[5] G. Gustafson, and J. Häkkinen, Z. Phys. C Particles and Fields 61, 683-687 (1994).

The Cross Section based Model

The antideuteron formation is described as a probabilistic process [6].

We expect this probability to be proportional to the **cross section** for $\bar{p}\bar{n} \rightarrow \bar{d}X$.

In this model, antideuterons can be produced at values of k well into the GeV range.

- For low values of k, the relevant process is still the $\bar{p}\bar{n}
 ightarrow \bar{d}\gamma$ process,
- For CoM energies above the pion threshold, $ar{p}ar{n} o ar{d}(N\pi)^0$ processes dominate,
- At these energies, deuteron are actually more efficiently produced from p
 p
 and n
 n
 pairs.

The formation probability

Given a $\bar{p}\bar{n}$, $\bar{p}\bar{p}$ or $\bar{n}\bar{n}$ pair, the probability that it will form an antideuteron through a process *i* between those shown below:

$$P(\bar{N}_1 \bar{N}_2 \to \bar{d}X_i|k) = \frac{\sigma_{\bar{N}_1 \bar{N}_2 \to \bar{d}X_i}(k)}{\sigma_0}, \tag{6}$$

where \bar{N}_1 and \bar{N}_2 are the species of the two antinucleons, X_i represents the other final state particles in the given process and σ_0 is the free parameter of the model.

1)
$$\bar{p}\bar{n} \to \bar{d}\gamma$$
 3) $\bar{p}\bar{n} \to \bar{d}\pi^+\pi^-$ 5) $\bar{p}\bar{p} \to \bar{d}\pi^-$ 7) $\bar{p}\bar{p} \to \bar{d}\pi^-\pi^0$
2) $\bar{p}\bar{n} \to \bar{d}\pi^0$ 4) $\bar{p}\bar{n} \to \bar{d}\pi^0\pi^0$ 6) $\bar{n}\bar{n} \to \bar{d}\pi^+$ 8) $\bar{n}\bar{n} \to \bar{d}\pi^+\pi^-$

[6] L. A. Dal, A. R. Raklev, Phys. Rev. D 91, 123536 (2015).

This model implies to know the cross sections as a function of k for all these processes.

To gather as much experimental data as possible to perform a good fit:

- The charge conjugate processes: $\sigma_{N_1N_2 \rightarrow \bar{d}X} = \sigma_{N_1N_2 \rightarrow dX}$,
- The isospin invariance,
- The principle of detailed balance: $\sigma(Aa \rightarrow Bb) = \frac{g_{BBb}}{g_{A}g_{a}} \frac{p_{b}^{2}}{p_{a}^{2}} \sigma(Bb \rightarrow Aa), \quad g_{i} = (2s_{i} + 1).$

Figure 1: Fits to cross sections: each line is the result a least squares fit to experimental data using a properly defined function. For each process I have calculated the threshold in k, setting the cross sections to zero below it.

The advanced coalescence model combines the event-by-event MC simulations with a microscopic picture based on the **Wigner function** of produced states [7].

The density matrix formalism

In QM the statistical properties of a system can be described by its **density matrix** ρ . The number of observed deuterons *d* with a given momentum \bar{p}_d is than given by:

$$\frac{d^3 N_d}{dp_d^3} = Tr(\rho_d \rho_{pn}),\tag{7}$$

where $\rho_d = |\phi_d\rangle\langle\phi_d|$ and $\rho_{pn} = |\psi_p\psi_n\rangle\langle\psi_n\psi_p|$, normalised as $\langle\psi_n\psi_p|\psi_p\psi_n\rangle = N_pN_n$.

Evaluating eq. 7 in coordination representation $|\bar{x}_1\bar{x}_2\rangle$,

$$\frac{d^{3}N_{d}}{dp_{d}^{3}} = g_{d}N_{d}\int d^{3}x_{1}d^{3}x_{2}d^{3}x_{1}'d^{3}x_{2}' \ \phi_{d}^{*}(\bar{x}_{1},\bar{x}_{2})\phi_{d}(\bar{x}_{1}',\bar{x}_{2}') \ \left\langle\psi_{n}^{\dagger}(\bar{x}_{2}')\psi_{p}^{\dagger}(\bar{x}_{1}')\psi_{p}(\bar{x}_{1})\psi_{n}(\bar{x}_{2})\right\rangle, \quad (8)$$

where $\phi_d(\bar{x}_1, \bar{x}_2)$ and $\psi_i(\bar{x})$ are the wave functions of the deuteron and the nucleon *i*.

[7] M. Kachelriess, S. Ostapchenko, J. Tjemslan, J. Eur. Phys. J. A 56, 4 (2020).

The Advanced Coalescence Model

I factorise $\phi_d(\bar{x}_1, \bar{x}_2)$ into a plane wave and an internal wave function φ_d ,

$$\phi_d(\bar{x}_1, \bar{x}_2) = \frac{1}{(2\pi)^{3/2}} e^{\frac{i}{2}\bar{p}_d \cdot (\bar{x}_1 + \bar{x}_2)} \varphi_d(\bar{x}_1 - \bar{x}_2), \tag{9}$$

and I replace the two-nucleon density matrix by its two-body Wigner function W_{np} ,

$$\langle \psi_{n}^{\dagger}(\bar{\mathbf{x}}_{2}')\psi_{p}^{\dagger}(\bar{\mathbf{x}}_{1}')\psi_{p}(\bar{\mathbf{x}}_{1})\psi_{n}(\bar{\mathbf{x}}_{2})\rangle = \int \frac{d^{3}p_{n}}{(2\pi)^{3}} \frac{d^{3}p_{p}}{(2\pi)^{3}} W_{np}\Big(\bar{p}_{n},\bar{p}_{p},\frac{\bar{\mathbf{x}}_{2}+\bar{\mathbf{x}}_{2}'}{2},\frac{\bar{\mathbf{x}}_{1}+\bar{\mathbf{x}}_{1}'}{2}\Big) \cdot e^{i\bar{p}_{n}\cdot(\bar{\mathbf{x}}_{2}-\bar{\mathbf{x}}_{2}')} e^{i\bar{p}_{p}\cdot(\bar{\mathbf{x}}_{1}-\bar{\mathbf{x}}_{1}')}.$$

$$(10)$$

Introducing the new coordinates $\bar{r}_p = \frac{(\bar{x}_1 + \bar{x}'_1)}{2}$ and $\bar{r}_n = \frac{(\bar{x}_2 + \bar{x}'_2)}{2}$, the separations $\bar{r} = \bar{r}_n - \bar{r}_p$, $\bar{\xi} = \bar{x}_1 - \bar{x}'_1 - \bar{x}_2$ and $\bar{\rho} = \frac{(\bar{x}_1 - \bar{x}'_1 + \bar{x}_2 - \bar{x}'_2)}{2}$ and the new momentum integration variables $\bar{\rho} = \bar{\rho}_n + \bar{\rho}_p$ and $\bar{k} = \frac{(\bar{\rho}_n - \bar{\rho}_p)}{2}$, the eq. 8 becomes:

The production yield in terms of Wigner functions

$$\frac{d^{3}N_{d}}{dp_{d}^{3}} = g_{d}N_{d}\int d^{3}k\int d^{3}r_{p}d^{3}r_{n} \mathcal{D}(\bar{r},\bar{k}) W_{np}\Big(\frac{\bar{p}_{d}}{2} + \bar{k},\frac{\bar{p}_{d}}{2} - \bar{k},\bar{r}_{n},\bar{r}_{p}\Big),$$
(11)

where

$$\mathcal{D}(\bar{r},\bar{k}) = \int d^3\xi \ e^{-i\bar{k}\cdot\bar{\xi}} \ \varphi_d\left(\frac{\bar{r}+\bar{\xi}}{2}\right) \ \varphi_d^*\left(\frac{\bar{r}-\bar{\xi}}{2}\right) \tag{12}$$

is the deuteron Wigner function.

Starting from a complete QM treatment, I now simplify to a **semi-classical problem** assuming a factorization of the momentum and coordinate dependences:

$$W_{np}\left(\frac{\bar{p}_{d}}{2} + \bar{k}, \frac{\bar{p}_{d}}{2} - \bar{k}, \bar{r}_{n}, \bar{r}_{p}\right) = H_{np}(\bar{r}_{n}, \bar{r}_{p}) \ G_{np}\left(\frac{\bar{p}_{d}}{2} + \bar{k}, \frac{\bar{p}_{d}}{2} - \bar{k}\right).$$
(13)

I neglect spatial correlations between p and n, $H_{np}(\bar{r}_n, \bar{r}_p) = h(\bar{r}_n)h(\bar{r}_p)$, choosing a Gaussian ansatz for $h(\bar{r})$,

$$h(\bar{r}) = \frac{1}{(2\pi\sigma^2)^{3/2}} e^{-\frac{r^2}{2\sigma^2}}.$$
 (14)

With these assumption,

$$W_{np}\left(\frac{\bar{p}_d}{2} + \bar{k}, \frac{\bar{p}_d}{2} - \bar{k}, \bar{r}_n, \bar{r}_p\right) = \frac{1}{(2\pi\sigma^2)^3} e^{-\frac{r_n^2}{2\sigma^2}} e^{-\frac{r_p^2}{2\sigma^2}} G_{np}\left(\frac{\bar{p}_d}{2} + \bar{k}, \frac{\bar{p}_d}{2} - \bar{k}\right),$$
(15)

where σ is the same for p and n and represents the size of the formation region.

The Deuteron Wigner Function

I chose the sum of two Gaussians ansatz as deuteron wave function,

$$\varphi_d(\bar{r}) = \pi^{-\frac{3}{4}} \Big[\frac{\sqrt{\Delta}}{d_1^{3/2}} e^{-\frac{r^2}{2d_1^2}} + e^{i\alpha} \frac{\sqrt{1-\Delta}}{d_2^{3/2}} e^{-\frac{r^2}{2d_2^2}} \Big], \tag{16}$$

and fitting the probability distribution $|\varphi_d(\bar{r})|^2$ to the Hulthen function I fix the physical parameters Δ , d_1 , d_2 . The **deuteron Wigner function** follows then as

$$\mathcal{D}(\bar{r},\bar{k}) = 8 \left[\Delta \ e^{-\frac{r^2}{d_1^2}} \ e^{-k^2 d_1^2} + (1-\Delta) \ e^{-\frac{r^2}{d_2^2}} \ e^{-k^2 d_2^2} \right] + \mathcal{A}(\bar{r}\cdot\bar{k}). \tag{17}$$

Then, from

$$\frac{d^3 N_d}{dp_d^3} = g_d N_d \int d^3 k \int d^3 r_p d^3 r_n \ \mathcal{D}(\bar{r}, \bar{k}) \ W_{np} \Big(\frac{\bar{p}_d}{2} + \bar{k}, \frac{\bar{p}_d}{2} - \bar{k}, \bar{r}_n, \bar{r}_p\Big), \tag{18}$$

The formation probability

A given pn-pair with momentum difference 2k in its CoM has probability

$$P(pn \to dX \mid k) = 3 \left(\zeta_1 \Delta e^{-k^2 d_1^2} + \zeta_2 (1 - \Delta) e^{-k^2 d_2^2} \right), \tag{19}$$

to form a deuteron, where the ζ_i are given by

$$\zeta_i = \left(\frac{d_i^2}{d_i^2 + 4\sigma^2}\right)^{3/2} \le 1,\tag{20}$$

and σ represents the only free parameter of the model.

χ^2 minimization - Advanced Coalescence Model

