Diabatic Approach

< E.

IFIC (UV-CSIC)

Quarkoniumlike Mesons in the Diabatic Approach

Roberto Bruschini roberto.bruschini@ific.uv.es

Instituto de Física Corpuscular University of Valencia - CSIC

19th International Conference on Hadron Spectroscopy and Structure in memoriam Simon Eidelman Mexico City, 28 July 2021

Roberto Bruschini

< < >> < <</>

IFIC (UV-CSIC)

1 Introduction

- Motivation
- Born-Oppenheimer Approximation
- Energy Levels in Lattice QCD
- 2 Diabatic Approach
 - Diabatic Formalism
 - String Breaking

3 Results

- Bottomoniumlike Mesons
- Charmoniumlike Mesons
- Summary and References

Outline o Motivation Introduction

Diabatic Approach

IFIC (UV-CSIC)

Unconventional Charmoniumlike Mesons

Threshold effects?

< < >> < <</>

Unconventional mesons are often found near open-flavor thresholds.

Roberto Bruschini

Introduction

Diabatic Approach

IFIC (UV-CSIC)

Results

Born-Oppenheimer Approximation

Description in Heavy and Light Fields

Roberto Bruschini

Outline	Introduction	Diabatic Approach	Results
0		00000	0000000
Born-Oppenheimer Approximat	ion		

Integrating the Light Fields

1 Separate kinetic energy of the heavy quarks

$$H \ket{\psi} = E \ket{\psi}, \qquad H = K_{\mathsf{heavy}} + H_{\mathsf{light}}^{(\mathsf{heavy})}.$$

2 Solve the light-field Hamiltonian for static heavy quarks

 $H^{(ext{heavy})}_{ ext{light}} o H_{ ext{static}}(r), \qquad H_{ ext{static}}(r) \ket{\zeta_i(r)} = V_i(r) \ket{\zeta_i(r)}.$

イロト イロト イヨト イヨ

IFIC (UV-CSIC)

Static energy levels

The static energies $V_i(r)$ can be calculated *ab initio* in Lattice QCD.

Roberto Bruschini

Introduction

Diabatic Approach

Results

Born-Oppenheimer Approximation

Adiabatic Wave Function

Adiabatic expansion

$$|\psi\rangle = \sum_{i} \int \mathrm{d}r \, \psi_{i}(r) \left| r \right\rangle \left| \zeta_{i}(r) \right\rangle$$

- Light field states calculated at the same position of the heavy quarks
- One wave function for each light-field energy

Roberto Bruschini

IFIC (UV-CSIC)

Introduction

Diabatic Approach

Image: A math a math

IFIC (UV-CSIC)

Born-Oppenheimer Approximation

Adiabatic Schrödinger Equation

$$\sum_{j} \left[-\frac{\hbar^2}{2\mu} (\delta_{ij} \nabla + \tau_{ij}(r))^2 + \delta_{ij} (V_i(r) - E) \right] \psi_j(r) = 0$$

Non-adiabatic coupling terms

The kinetic energy term mixes different channels through the non-adiabatic couplings $\tau_{ij}(r) = \langle \zeta_i(r) | \nabla \zeta_j(r) \rangle$.

Adiabatic potentials

The potentials $V_i(r)$ in the Schrödinger equation are the energy levels calculated in Lattice QCD.

Roberto Bruschini

Introduction

Diabatic Approach

Results

IFIC (UV-CSIC)

Energy Levels in Lattice QCD

Adiabatic Potentials in Quenched Lattice QCD

Quenched Lattice QCD

Gluons only, without light quarks

- Ground state: quarkonium potential
- Excited states: hybrid potentials

Roberto Bruschini

Diabatic Approach

Results

IFIC (UV-CSIC)

Energy Levels in Lattice QCD

Adiabatic Potentials in Unquenched Lattice QCD

Unquenched Lattice QCD

Gluons and light quarks

String breaking

Channel mixing significant near the avoided crossing

Roberto Bruschini

Introductior 0000000 Diabatic Approach

From Adiabatic to Diabatic

Diabatic expansion

$$\left|\psi\right\rangle = \sum_{i} \int \mathrm{d}r \, \widetilde{\psi}_{i}(r, r_{0}) \left|r\right\rangle \left|\zeta_{i}(r_{0})\right\rangle$$

Diabatic channels

$$\widetilde{\psi}_i(r, r_0) \rightarrow \psi_{Q\overline{Q}}(r), \, \psi_{M\overline{M}}(r)$$

- Light field states are calculated at a fixed position r₀.
- For r₀ far from the avoided crossing, they correspond to quark-antiquark and meson-meson.

IFIC (UV-CSIC)

・ロト ・回ト ・ ヨト ・

Roberto Bruschini

Outline o Diabatic Formalism Introduction

Diabatic Approach

IFIC (UV-CSIC)

The Diabatic Schrödinger Equation

$$\begin{bmatrix} \begin{pmatrix} -\frac{\nabla^2}{2\mu_{Q\overline{Q}}} & 0\\ 0 & -\frac{\nabla^2}{2\mu_{M\overline{M}}} \end{pmatrix} + \begin{pmatrix} V_{Q\overline{Q}}(r) & V_{\text{mix}}(r)\\ V_{\text{mix}}(r) & T_{M\overline{M}} \end{pmatrix} - E \end{bmatrix} \begin{pmatrix} \psi_{Q\overline{Q}}(r)\\ \psi_{M\overline{M}}(r) \end{pmatrix} = 0$$

Diabatic potential matrix

The potential couples quark-antiquark and meson-meson.

Adiabatic-to-diabatic transformation

The eigenvalues of the diabatic potential matrix are the adiabatic potentials calculated in Lattice QCD.

Outline	
String Breaki	ng

Introductior

Diabatic Approach

Results

IFIC (UV-CSIC)

Adiabatic Potentials in Unquenched Lattice QCD

Unquenched Lattice QCD

Gluons and light quarks

String breaking

Channel mixing significant near the avoided crossing

Roberto Bruschini

Outline o String Breaking

Introductior

Diabatic Approach

Results

IFIC (UV-CSIC)

The Quark-Antiquark–Meson-Meson Mixing Potential

Gaussian parametrization

$$|V_{\mathsf{mix}}(r)| = \frac{\Delta}{2} e^{-\frac{(V_{Q\overline{Q}}(r) - T_{M\overline{M}})^2}{2\Lambda^2}}$$

Δ: mixing strength
Λ: mixing width

< < >> < <</>

Roberto Bruschini

Introduction

Diabatic Approach ○○○○●

Mixing Effects on the Quarkoniumlike Spectrum

Above threshold

- Meson states acquire decay width.
- Quarkonium masses are shifted.

Below threshold

- Meson states acquire molecular components.
- Unconventional mesons may appear near threshold.

イロト イボト イヨト イヨ

IFIC (UV-CSIC)

Unified description above and below threshold

Appearance of unconventional mesons and resonance decays are described by the same mixing potential.

Roberto Bruschini

Introduction

Diabatic Approach

Bottomoniumlike Mesons

Bottomoniumlike Spectrum

From Lattice QCD $\Delta \approx 50$ MeV

IFIC (UV-CSIC)

 Relatively small threshold effects

Roberto Bruschini

Bottomoniumlike Mesons

Introduction

Diabatic Approach

・ロ・・ (日・・・ 日・・・

Results

IFIC (UV-CSIC)

Strong Decay Widths of Bottomoniumlike States

J ^{PC}	М	$\Gamma_{B\overline{B}}$	$\Gamma_{B\overline{B}^*}$	$\Gamma_{B^*\overline{B}^*}$	$\Gamma_{B_s\overline{B}_s}$	Γ^{Theor}_{total}	Γ_{total}^{Expt}
0++	10785.8	1.6		5.3	0.7	7.6	
1^{++}	10778.9		0.2	1.7		1.9	
2++	10588.4	4.3				4.3	
2++	10782.3	5.4	1.5	21.0	10.4	38.3	
$1^{}$	10599.8	21.9				21.9	20.5 ± 2.5
$1^{}$	10697.0	2.0	1.0	38.0		41.0	

Masses and widths in MeV units

Roberto Bruschini

Outline	
CI	N 4

Introduction

Diabatic Approach

Results ○○●○○○○

IFIC (UV-CSIC)

Charmoniumlike Spectrum

- Fitting χ_{c1}(3872)
 Δ ≈ 130 MeV
- More prominent threshold effects

Roberto Bruschini

Introduction 0000000 Diabatic Approach

・ロ・・1日・ ・日・ ・日

IFIC (UV-CSIC)

Results ○○○●○○○

Strong Decay Widths of Charmoniumlike States

J ^{PC}	М	$\Gamma_{D\overline{D}}$	$\Gamma_{D\overline{D}^*}$	$\Gamma_{D_s\overline{D}_s}$	Γ^{Theor}_{total}	Γ_{total}^{Expt}
0++	3920.9	0.6			0.6	
2++	3881.1	49.5	0.4		49.9	$\textbf{35.3} \pm \textbf{2.8}$
2++	4003.9	4.8	6.3	3.5	14.5	
$1^{}$	3771.7	20.2			20.2	27.2 ± 1.0

Masses and widths in MeV units

Roberto Bruschini

Outline o Charmoniumlike Mesons

Introduction

Diabatic Approach

Results ○○○○●○○

Diabatic Wave Function of $\chi_{c1}(3872)$

about 3% of $c\overline{c}$ about 97% of $D\overline{D}^*$ $\sqrt{\langle r^2 \rangle} \approx 11 \text{ fm}$

Diabatic $\chi_{c1}(3872)$

It can be described as a $D\overline{D}^*$ molecule created by the mixing between $D\overline{D}^*$ and $c\overline{c}$.

-

IFIC (UV-CSIC)

Roberto Bruschini

Outline 0	Introduction 0000000	Diabatic Approach 00000	Results ○○○○●○
Summary and References			

Summary

- The Born-Oppenheimer approximation gives a description of quarkonium firmly based on Lattice QCD.
- The diabatic framework allows to include open-flavor mesons and string breaking into this description nonperturbatively.
- The diabatic potential matrix, calculable from Lattice QCD, can give account of the spectrum as well as strong decays of quarkoniumlike mesons.

< ∃⇒

IFIC (UV-CSIC)

Outline	Introduction	Diabatic Approach	Results
0	0000000	00000	○○○○○○●
Summary and References			

For Further Reading

- R. Bruschini and P. González.
 Diabatic description of charmoniumlike mesons.
 Phys. Rev. D 102, 074002 (2020).
- R. Bruschini and P. González.
 Diabatic description of charmoniumlike mesons. II.
 Mass corrections and strong decay widths.
 Phys. Rev. D 103, 074009 (2021).
- R. Bruschini and P. González.
 Diabatic description of bottomoniumlike mesons.
 Phys. Rev. D 103, 114016 (2021).