Bottomonium-like exotics and new physics in bottomonium decay at Belle II

Bianca SCAVINO bscavino@uni-mainz.de

On behalf of the Belle II collaboration

19TH INTERNATIONA CONFERENCE ON HADRON SPECTROSCOPY AND STRUCTURE

Federal Ministry of Education and Research

Outlook

B Factories: past and present

> Next generation *B* Factory

Bottomonium-like exotics and NP: Belle II potential (selected list of topics in exotica and NP perspective)

> Exotica(?): 10.75 GeV

> NP: LFV

> Exotica/NP: double strange di-baryon

Belle II @ HADRON2021

- 1) Results of Belle and the perspectives for Belle II V. Bhardwaj
- 2) ISR studies at Belle II S. Jia
- 3) Studies of the X(3872) at Belle II E. Prencipe
- 4) Bottomonium-like exotics and new physics in

bottomonium decay at Belle II - B. S.

5) Bottomonium results and prospects at Belle II - B. Fulsom

B Factories legacy

B Factory: collider experiment designed to produce a large number of **B** mesons

> (1st generation) Belle, BaBar: e⁺e⁻ colliders with center of mass energy tuned to the Y(4S) resonance peak

B Factories legacy

B Factory: collider experiment designed to produce a large number of **B** mesons

> (1st generation) Belle, BaBar: e⁺e⁻ colliders with center of mass energy tuned to the Y(4S) resonance peak

B Factories extended their physics programs with non Y(4S) data

1-- directly accessible with e+e- colliders

Bottomonium @ Belle II

Broad physics program

- ISR, Precision spin-singlet spectroscopy, ...
- Exotica, threshold exploration, precision spin-singlet spectroscopy, high-statistics scan, ...

...with possible implications in many sectors

> Hadron physics, astrophysics, DM,

Bottomonium @ HEP experiments

Belle II is in a unique position

> Only the LHC experiments will cover bottomonia with strong limitations

Recipe for success

Statistics, statistics, statistics!

SuperKEKB and the nano-beam scheme

Hermeticity

> The Belle II detector

Reduce systematics & electron/muon separation

> Belle II detector & software performance

Recipe for success

Statistics, statistics, statistics!

SuperKEKB and the nano-beam scheme

Hermeticity

Reduce systematics & electron/muon separation

> Belle II detector & software performance

Bianca Scavino

Nano beam scheme does not come for free

> (Currently) better algorithms and electronics/detector are only

enough to compensate the increased backgrounds

Bottomonium-like exotics and NP: Belle II potential

> Exotica(?): 10.75 GeV

> NP: LFV

> Exotica/NP: double strange di-baryon

A (personal and) not comprehensive selected list of topics

Bianca Scavino

The Belle II Physics Book PTEP 2019 (2019) 12, 123C01

Recent result (2019)

> Observation of a new structure near 10.75 GeV

in the energy dependence of the e⁺e⁻ \rightarrow Y(nS) $\pi \pi$

	$\Upsilon(10860)$	$\Upsilon(11020)$	New strue
$M (MeV/c^2)$	$10885.3 \pm 1.5 {}^{+2.2}_{-0.9}$	$11000.0^{+4.0}_{-4.5}{}^{+1.0}_{-1.3}$	$10752.7~\pm$
$\Gamma ~({ m MeV})$	$36.6^{+4.5\ +0.5}_{-3.9\ -1.1}$	$23.8^{+8.0\ +0.7}_{-6.8\ -1.8}$	$35.5^{+17.6}_{-11.3}$

Recent result (2019)

> Observation of a new structure near 10.75 GeV

in the energy dependence of the e⁺e⁻ \rightarrow Y(nS) $\pi \pi$

	$\Upsilon(10860)$	$\Upsilon(11020)$	New stru
$M (MeV/c^2)$	$10885.3 \pm 1.5 {}^{+2.2}_{-0.9}$	$11000.0^{+4.0}_{-4.5}{}^{+1.0}_{-1.3}$	$10752.7 \pm$
$\Gamma ({ m MeV})$	$36.6^{+4.5}_{-3.9}{}^{+0.5}_{-1.1}$	$23.8^{+8.0\ +0.7}_{-6.8\ -1.8}$	$35.5\substack{+17.6 \\ -11.3}$

Exotica?

> Unlikely to be a molecule as it's far from any S- threshold

> No direct matching to conventional states (but may be an S-D mixing?)

Recent result (2019)

> Observation of a new structure near 10.75 GeV

in the energy dependence of the e⁺e⁻ \rightarrow Y(nS) $\pi \pi$

	$\Upsilon(10860)$	$\Upsilon(11020)$	New stru
$M (MeV/c^2)$	$10885.3 \pm 1.5 {}^{+2.2}_{-0.9}$	$11000.0^{+4.0}_{-4.5}{}^{+1.0}_{-1.3}$	$10752.7 \pm$
$\Gamma ({ m MeV})$	$36.6^{+4.5}_{-3.9}{}^{+0.5}_{-1.1}$	$23.8^{+8.0\ +0.7}_{-6.8\ -1.8}$	$35.5\substack{+17.6 \\ -11.3}$

Exotica?

> Unlikely to be a molecule as it's far from any S- threshold

> No direct matching to conventional states (but may be an S-D mixing?)

10.75 @ Belle II

> Revisit this energy region with greater statistics

> First non-Y(4S) run this fall, 10 fb⁻¹ on resonance + 3 scan points

NP:LFV

The observation of CLFV transitions would provide clean probes of NP

Experimental information on vector quarkonia leptonic decays can be converted to experimental bounds on Wilson coefficients

> The restricted kinematics of two-body transitions reduces the reliance on single operator dominance assumption [PRD 94,074023 (2016), Hazard, Petrov]

The observation of CLFV transitions would provide clean probes of NP

Experimental information on vector quarkonia leptonic decays can be converted to experimental bounds on Wilson coefficients

The restricted kinematics of two-body transitions reduces the reliance on single operator dominance assumption [PRD 94,074023 (2016), Hazard, Petrov]

LFV @ B Factories: where are we

- > Available experimental upper bounds on $B(V \rightarrow I_1 I_2)$
- ...some of them still from CLEO..

The observation of CLFV transitions would provide clean probes of NP

Experimental information on vector quarkonia leptonic decays can be converted to experimental bounds on Wilson coefficients

> The restricted kinematics of two-body transitions reduces the reliance on single operator dominance assumption [PRD 94,074023 (2016), Hazard, Petrov]

LFV @ Belle II

> Push as much as possible the sensitivity on Y(nS) $\rightarrow e\tau$, $\mu\tau$, $e\mu$

Lumi-scaling extrapolation using 300 fb⁻¹ @ Y(3S)

Exotica/NP: double strange di-baryon

Loosely bound H-dibaryon (*)

> PRL 38 (1977) 195-198, Jaffe

Deeply bound exaquark ()**

> JETP Lett. 70 (1999) 491-494, Kochelev > arXiv:1708.08951 [hep-ph], Farrar

Double strange di-baryon @ B Factories: why/how

> Similarities between hadronic collisions and narrow bottomonia annihilations

Good place to look for strange (exotic) baryons

Exotica/NP: double strange di-baryon

Loosely bound H-dibaryon

> PRL 38 (1977) 195-198, Jaffe

Deeply bound exaquark

JETP Lett. 70 (1999) 491-494, Kochelev
arXiv:1708.08951 [hep-ph], Farrar

Double strange di-baryon @ B Factories: why/how

> Similarities between hadronic collisions and narrow bottomonia annihilations

Double strange di-baryon @ B Factories: where are we

> Belle: PRL 110, 222002 (2013)

> BaBar: Phys.Rev.Lett. 122 (2019) 7, 072002

Exotica/NP: double strange di-baryon

Loosely bound H-dibaryon

> PRL 38 (1977) 195-198, Jaffe

Deeply bound exaquark

JETP Lett. 70 (1999) 491-494, Kochelev
arXiv:1708.08951 [hep-ph], Farrar

Double strange di-baryon @ Belle II

- > Improve the UL estimation (more data)
- > Additional mesons in the final state

Belle II started data taking

> Will soon match the Belle dataset @ Y(4S)

We're at the beginning of an exciting bottomonium program

> Early results (rediscoveries) on track

Belle II bottomonium program includes

> Early run at Y(10.75), fall 2021

> 300 fb⁻¹ of Y(3S)

> 1ab⁻¹ of Y(5S), 500 fb⁻¹ of scan above Y(5S), 100 fb⁻¹ of Y(6S)

Bottomonium-related schedule is under discussion

Input and theoretical support is very welcome

Bianca Scavino

Next Belle II talk @ HADRON2021

Jul 29, h.12: Bottomonium results and prospects at Belle II

(B. Fulsom)

Not explicitly mentioned today

The Belle II Physics Book PTEP 2019 (2019) 12, 123C01

, ,

Belle II started data taking

> Will soon match the Belle dataset @ Y(4S)

We're at the beginning of an exciting bottomonium program

> Early results (rediscoveries) on track

Belle II bottomonium program includes

> Early run at Y(10.75), fall 2021

> 300 fb⁻¹ of Y(3S)

1ab⁻¹ of Y(5S), 500 fb⁻¹ of scan above Y(5S), 100 fb⁻¹ of Y(6S)

Bottomonium-related schedule is under discussion

Input and theoretical support is very welcome

Next Belle II talk @HADRON2021

Jul 29, h.12: Bottomonium results and prospects at Belle II

(B. Fulsom)

Not explicitly mentioned today

The Belle II Physics Book PTEP 2019 (2019) 12, 123C01

Thank you for your attention!