Hadron 2021, Jul 26-30, 2021

Anatomy of the internal structures of the exotic hadrons in a quantitative manner

Zhi-Hui Guo (郭志辉)

Southeast University (东南大学)

Zhi-Hui Guo(Southeast Univ.)

Anatomy of the internal structures of the exotic hadrons @ Hadron2021

Outline:

- 1. Background & Introduction
- 2. Effective range expansion & near-threshold state
- 3. Zc(3900), Zcs(3985) and X(4020)
- 4. X(6900) and X(6825)
- 5. Summary

Background & Introduction

Renaissance of hadron physics:

[X(3872), Zc(3900), Zcs(3985), X(4020), X(6900), Pc(4312) ...]

Many of them lie close to some underlying thresholds.

Important question that follows:

Kinematical effects ? Or <u>Hadron molecules</u>? Or <u>Elementary/Compact states</u>?

- Theoretcial methods to probe the composition of hadrons:
- ✓ QCD sum rules
- ✓ Pole counting rule
- ✓ Nc trajecotries of resonance poles
- ✓ Weinberg's compositeness relation

□ Pole counting rule [Morgan, NPA'92]

Criteria: Number of nearby poles in S-wave scattering amplitudes

- Elementary particle: A pair of poles close to threshold
- Molecular type: Single pole close to threshold
 Zc(3900): molecule of Dbar-D* [Zheng et al., PRD '16]
- I Nc trajecotries of resonance poles [Guo et al., PRD '12 '15;

Pole counting rule and Nc trajectories only give qualitative conclusions !

Zhi-Hui Guo(Southeast Univ.)

Zhi-Hui Guo(Southeast Univ.)

- Bound state √: Z and X are positive real numbers, allowing probabilistic interpretations
- **Resonance** ×: Z and X are usually complex, meaningless to be interpreted as probabilities

We propose an alternative way to generalize Weinberg compositeness relation for resonances.

[ZHG, Oller, PRD '16]

Transformation of S matrix and Probability interpretation of X

$$\begin{split} \hat{S}_{u}(s) &= \hat{\mathcal{U}}_{m} \hat{S}_{m}(s) \hat{\mathcal{U}}_{m}^{T} \\ \hat{\gamma}_{u} &= \hat{\rho}(s_{P})^{-\frac{1}{2}} \hat{\mathcal{U}}_{m} \hat{\rho}(s_{P})^{\frac{1}{2}} \hat{\gamma} \\ \hat{\mathcal{U}}_{m} &= \operatorname{diag}(e^{i\phi_{1}}, \dots, e^{i\phi_{m}}) \end{split} \qquad 1 = -\hat{\gamma}_{u}^{T} \frac{d\hat{G}_{m}(s_{P})}{ds} \hat{\gamma}_{u} + \hat{\gamma}_{u}^{T} \hat{G}_{m} \frac{d\hat{\mathcal{K}}_{u}(s_{P})}{ds} \hat{G}_{m} \hat{\gamma}_{u} \end{split}$$

This procedure gives a positive real value for X

$$X_i^R = -e^{2i\phi_i}\eta_i^2 |\gamma_i|^2 \frac{dG(s_P)_i}{ds} = |\gamma_i|^2 \left| \frac{dG(s_P)_i}{ds} \right|$$

Caveats: only valid for resonance poles when $M_R > m_{threshold}$

Zhi-Hui Guo(Southeast Univ.)

Anatomy of the internal structures of the exotic hadrons @ Hadron2021

Summary: Once S matrix is known in a region (no matter how small) of physical axis around M_R , we can perfrom analytic extrapolation from the real axis to the complex plane, due to the convergence of the Laurent series for s around M_R .

Then, compositeness is model independently determined by the properties of resonance pole (pole position and residues)

$$X_i^R = |\gamma_i|^2 \left| \frac{dG(s_P)_i}{ds} \right|$$

Hidden-channel effects are identified as "Elementariness" !

Applications to some well-established hadrons

[Guo, Oller, PRD '16]

19 							
Name of the states	Pole: $\sqrt{s_P}$ [MeV]	$X^R_{\pi\pi}$	$X^R_{\bar{K}K}$	$X^R_{\eta\eta}$	$X^R_{\eta\eta'}$	X ^R	Z^R
f ₀ (500) [17]	$442^{+4}_{-4} - i246^{+7}_{-5}$	$0.40\substack{+0.02\\-0.02}$				$0.40\substack{+0.02\\-0.02}$	$0.60^{+0.02}_{-0.02}$
$f_0(980)$ [17]	$978^{+17}_{-11} - i29^{+9}_{-11}$	$0.02\substack{+0.01\\-0.01}$	$0.65^{+0.27}_{-0.26}$			$0.67\substack{+0.28\\-0.27}$	$0.33\substack{+0.28\\-0.27}$
$f_0(1710)$ [14]	$1690^{+20}_{-20} - i110^{+20}_{-20}$	$0.00\substack{+0.00\\-0.00}$	$0.03\substack{+0.01\\-0.01}$	$0.02\substack{+0.01\\-0.01}$	$0.20\substack{+0.07\\-0.07}$	$0.25\substack{+0.10\\-0.10}$	$0.75\substack{+0.10 \\ -0.10}$
ho(770) [17]	$760^{+7}_{-5} - i71^{+4}_{-5}$	$0.08\substack{+0.01\\-0.01}$				$0.08\substack{+0.01\\-0.01}$	$0.92\substack{+0.01 \\ -0.01}$
		$X^R_{K\pi}$				X^R	Z^R
$K_0^*(800)$ [17]	$643^{+75}_{-30} - i303^{+25}_{-75}$	$0.94_{-0.52}^{+0.39}$				$0.94\substack{+0.39\\-0.52}$	$0.06\substack{+0.39\\-0.52}$
K*(892) [17]	$892^{+5}_{-7} - i25^{+2}_{-2}$	$0.05\substack{+0.01\\-0.01}$				$0.05\substack{+0.01\\-0.01}$	$0.95\substack{+0.01\\-0.01}$
		$X^R_{\pi\eta}$	$X^R_{\bar{K}K}$	$X^R_{\pi\eta'}$		X^R	Z^R
<i>a</i> ₀ (1450) [17]	$1459_{-95}^{+70} - i174_{-100}^{+110}$	$0.09\substack{+0.03\\-0.07}$	$0.02\substack{+0.12 \\ -0.02}$	$0.12_{-0.09}^{+0.22}$		$0.23\substack{+0.37\\-0.18}$	$0.77^{+0.37}_{-0.18}$
		$X^R_{ ho\pi}$				X^R	Z^R
$a_1(1260)$ [18]	1260 - i250	0.46				0.46	0.54
Hyperon with $I = 0$		$X^R_{\pi\Sigma}$	$X^R_{\bar{K}N}$			X ^R	Z^R
$\Lambda(1405)$ broad [19]	$1388^{+9}_{-9} - i114^{+24}_{-25}$	$0.73_{-0.10}^{+0.15}$				$0.73^{+0.15}_{-0.10}$	$0.27^{+0.15}_{-0.10}$
$\Lambda(1405)$ narrow [19]	$1421^{+3}_{-2} - i19^{+8}_{-5}$	$0.18\substack{+0.13 \\ -0.08}$	$0.82\substack{+0.36\\-0.17}$			$1.00^{+0.49}_{-0.25}$	$0.00^{+0.49}_{-0.25}$
		X^R_{DK}	$X^R_{D_s\eta}$	$X^R_{D_s\eta'}$		X^R	Z^R
$D_{s0}^{*}(2317)$ [20]	2321^{+6}_{-3}	$0.56\substack{+0.05\\-0.03}$	$0.12\substack{+0.01\\-0.01}$	$0.02\substack{+0.01\\-0.01}$		$0.70\substack{+0.07\\-0.05}$	$0.30\substack{+0.07 \\ -0.05}$
		$X^R_{J/\psi f_0(500)}$	$X^R_{J/\psi f_0(980)}$	$X^{R}_{Z_{c}(3900)\pi}$	$X^R_{\omega\chi_{c0}}$	X^R	Z^R
Y(4260) [21,22]	4232.8 <i>- i</i> 36.3	0.00	0.02	0.02	0.17	0.21	0.79
							' 10

Zhi-Hui Guo(Southeast Univ.)

Effective range expansion

Effective-range-expansion (ERE)

$$V(k) = -\frac{1}{a} + \frac{1}{2}rk^2 \quad a: \text{ scattering length} \quad k = \sqrt{2\mu(E - M_{\text{th}})}$$
$$\mu = m_1 m_2 / (m_1 + m_2)$$
$$M_{\text{th}} = m_1 + m_2$$
$$T(k) = \frac{1}{V(k) - ik}$$

- Crossed-channel cuts neglected
- Convergent radius of ERE: dictated by the nearest singularity from the crossed channel
- Invalid if there is a near-threshold CDD pole !

$$\delta a = -\frac{M_{\rm th} - M_{\rm i,CDD}}{g_i} \quad \delta r = -\frac{g_i}{\mu (M_{\rm th} - M_{\rm i,CDD})^2} \quad \text{[Guo, Oller, PRD '16]}$$
12

Zhi-Hui Guo(Southeast Univ.)

Single-channel case

$$t(E) = \frac{1}{-\frac{1}{a} + \frac{1}{2}rk^2 - ik} \qquad t_{II}(E) = \frac{1}{-\frac{1}{a} + \frac{1}{2}rk^2 + ik} \qquad k = \sqrt{2\mu(E - M_{\rm th})}$$

Determine *a* and *r* using the mass and width of resonance *R*

$$E_R = M_R - i \frac{\Gamma_R}{2}, \quad k_R = \sqrt{2\mu(E_R - M_{\text{th}})}, \quad k_R = k_r + ik_i, \quad k_i > 0.$$

Partial wave amplitude in the 2nd Riemann Sheet :

$$0 = -\frac{1}{a} + \frac{1}{2}rk_R^2 + ik_R$$
$$a = -\frac{2k_i}{|k_R|^2}, \quad r = -\frac{1}{k_i}$$

Once *a* and *r* are determined, the partial-wave amplitude is completely fixed.

Residue in the variable of three-momentum k

Expand the denorminator in $k - k_R$:

[Kang, Guo, Oller, PRD '16]

$$t_{II}(k) = \frac{1}{(rk_R + i)(k - k_R)} + \dots = \frac{-k_i/k_r}{k - k_R} + \dots$$

 $\gamma_k^2 = -\frac{k_i}{k_r} > 0$ (Residue also fixed by the pole position) Remember: $k_R = k_r + ik_i$, $k_i > 0$.

Residue in the variable of CM energy *E***:**

$$t_{II}(E) \xrightarrow[E \to E_R]{} - \frac{\gamma^2}{s - E_R^2} \qquad \qquad \gamma_k^2 = -\gamma^2 \frac{dk}{ds} \Big|_{k_R} = -\frac{\mu \gamma^2}{2E_R k_R}$$

Compositeness for a resonance within ERE

$$X = \left| \gamma^2 \frac{dG(E_R)}{ds} \right| = \left| \gamma^2 \frac{dk}{ds} \frac{dG(E_R)}{dk} \right|^2 = \left| \gamma_k \right|^2 = \left(\frac{2r}{a} - 1 \right)^{-\frac{1}{2}}$$

Zhi-Hui Guo(Southeast Univ.)

Anatomy of the internal structures of the exotic hadrons @ Hadron2021

Zcs(3985)、Zc(3900)、X(4020)

Zhi-Hui Guo(Southeast Univ.)

Anatomy of the internal structures of the exotic hadrons @ Hadron2021

Elastic ERE Results for the Zcs(3985), Zc(3900) & X(4020)

[ZHG, Oller, PRD '21Mar]

Innuts	Tetraquark Resonance	Mass (MeV)	Width (MeV)	
Inputs	$Z_c(3900)$	3888.4 ± 2.5	28.3 ± 2.5	
	X(4020)	4024.1 ± 1.9	13 ± 5	
	$Z_{cs}(3985)$	3982.5 ± 3.3	12.8 ± 6.1	

Outputs from ERE and compositeness relation

Tetraquark Resonance	Threshold (MeV)	<i>a</i> (fm)	<i>r</i> (fm)	X
$Z_c(3900)$	$\bar{D}D^{*}$ (3875.5)	-0.84 ± 0.13	-2.52 ± 0.25	0.45 ± 0.06
<i>X</i> (4020)	\bar{D}^*D^* (4017.1)	-1.04 ± 0.30	-3.90 ± 1.35	0.39 ± 0.14
$Z_{cs}(3985)$	$D_s^- D^{*0}$ (3975.2)	-1.00 ± 0.47	-4.04 ± 1.82	0.38 ± 0.18
UR-000 Mt F2	$D_s^{*-}D^0$ (3977.0)	-1.28 ± 0.60	-3.65 ± 1.60	0.46 ± 0.19

- Single-channel scattering is assumed for each state. X is only calculated when the working condition is satisfied.
- Coupled-channel analysis including J/ψ-π (competition between its coupling strength and phase space) is in order.
 16

Coupled-channel study: saturation of X & width

Channels included : $J/\psi - \pi$ (1), DD^{*} (2)

$$X = X_1 + X_2 \equiv |g_1|^2 \left| \frac{\partial G_1^{\mathrm{II}}(s_R)}{\partial s} \right| + |g_2|^2 \left| \frac{\partial G_2^{\mathrm{II}}(s_R)}{\partial s} \right|$$

$$\Gamma_{R} = \Gamma_{1} + \Gamma_{2} = |g_{1}|^{2} \frac{q_{1}(M_{R}^{2})}{8\pi M_{R}^{2}} + |g_{2}|^{2} \int_{m_{\text{th}}}^{M_{R} + n\Gamma_{R}} dE \frac{q_{2}(E^{2})}{16\pi^{2}E^{2}} \frac{\Gamma_{R}}{(M_{R} - E)^{2} + \frac{\Gamma_{R}^{2}}{4}}$$

> M_R and Γ_R are known from Exp.

- Once g₁ and g₂ are obtained, partial decay widths and partial compositeness coefficients can then be predicted.
- Additional input to get g₁ and g₂: X, branching ratio, fits to data

Coupled-channel results for the Zc(3900)

Inputs $\Gamma_{D\bar{D}^*}/\Gamma_{J/\psi\pi} = 6.2 \pm 2.9$ [BESIII, '15PRD] Outputs $|g_1| = 1.46^{+0.43}_{-0.23}, |g_2| = 7.89^{+0.18}_{-0.44}$ $X_1 = 0.002 \pm 0.001, X_2 = 0.436^{+0.021}_{-0.047}, X = X_1 + X_2 = 0.438^{+0.021}_{-0.047}.$

Nice agreement with single-channel ERE

$$X = 0.45 \pm 0.06$$

This inspires us to use the X from single-channel ERE for Zcs(3985) and X(4020) to solve the coupled-channel equations !

Coupled-channel results for the Zcs(3985) & X(4020)

Channels included

[ZHG, Oller, PRD '21Mar]

X(4020): $h_c-\pi$ (1), D^*D^* (2), Zcs(3985): J/ψ -K (1), D_sD^* (2)

Resonance	$ g_1 $ (GeV)	$ g_2 $ (GeV)	Γ_1 (MeV)	Γ_2 (MeV)	$X_1 \times 10^3$	<i>X</i> ₂
X(4020) $X_{\rm ERE} = 0.39 \pm 0.14$	1.1 ± 0.2	6.5 ± 1.3	1.4 ± 0.5	11.6 ± 4.5	1 ± 1	0.39 ± 0.14
$Z_{cs}(3985)$ Threshold $(D_s^- D^{*0})$ $X_{ERE} = 0.38 \pm 0.18$	0.8 ± 0.2	6.4 ± 1.7	1.2 ± 0.6	11.6 ± 5.3	0.8 ± 0.4	0.38 ± 0.18
Threshold $(D_s^{*-}D^0)$ $X_{\text{ERE}} = 0.46 \pm 0.19$	0.9 ± 0.2	6.8 ± 1.7	1.2 ± 0.6	11.6 ± 5.6	0.8 ± 0.4	0.46 ± 0.19

Updated analysis by using the LHCb resluts is ongoing! Stay tuned !

X(6900) and prediction of a new state: X(6825)

Dynamical coupled-channel study of X(6900): 0⁺⁺ is assumed

Channels included : $J/\psi - J/\psi$ (1), $\chi_{c0} - \chi_{c0}$ (2), $\chi_{c1} - \chi_{c1}$ (3)

Scattering amplitude

$$\mathcal{T}(s) = [1 - \mathcal{V}(s) \cdot G(s)]^{-1} \cdot \mathcal{V}(s)$$

[ZHG, Oller, PRD '21Feb]

$$\mathcal{V}(s) = \begin{pmatrix} 0 & b_{12} & b_{13} \\ b_{12} & \frac{b_{22}}{M_{J/\psi}^2} (s - M_{CDD}^2) & \frac{b_{23}}{M_{J/\psi}^2} (s - M_{CDD}^2) \\ b_{13} & \frac{b_{23}}{M_{J/\psi}^2} (s - M_{CDD}^2) & \frac{b_{33}}{M_{J/\psi}^2} (s - M_{CDD}^2) \end{pmatrix}$$

Production amplitudes

$$B(s) = [1 - \mathcal{V}(s) \cdot G(s)]^{-1} \cdot \mathcal{P}$$

$$\mathcal{P} = \begin{pmatrix} d_1 \\ d_2 \\ d_3 \end{pmatrix}$$

 $\frac{J/\psi - J/\psi}{\text{distribution}} \qquad \frac{d\mathcal{N}(s)}{d\sqrt{s}} = |B_1(s)|^2 \frac{q_{J/\psi J/\psi}(s)}{M_{J/\psi}^2}$

Heavy-quark symmetry

$$b_{13} = \frac{b_{12}}{\sqrt{3}}, \qquad b_{23} = \frac{b_{22}}{\sqrt{3}}, \qquad b_{33} = \frac{b_{22}}{3} \qquad d_3 = d_2/\sqrt{3}$$

Zhi-Hui Guo(Southeast Univ.)

Fit results

	$\chi^2/d.o.f$	$a(\mu)$	M_{CDD}	<i>b</i> ₂₂	b_{12}	d_2
Fit I	1.6/(12-3)	-3.0*	6910*	10817^{+8378}_{-2096}	151^{+153}_{-99}	2213^{+2106}_{-316}
Fit II	4.9/(12-3)	-3.0*	6885*	21085^{+15141}_{-7359}	484_{-112}^{+239}	3646+1325

$$a(\mu) = -2\log\left(1 + \sqrt{1 + \frac{m^2}{q_{\max}^2}}\right) + \dots \simeq -3.0$$

22

Zhi-Hui Guo(Southeast Univ.)

Resonance poles for X(6825) [virtual pole of χ_{c0} - χ_{c0} (6829.4)]

Values for fit I:

 $E'_{R} = 6827.0^{+1.6}_{-4.8} - i1.1^{+1.3}_{-1.0}, \qquad |\gamma'_{1}| = 1.4^{+0.6}_{-0.9}, \qquad E'_{R} = 6820.6^{+1.6}_{-1.8}, \\ |\gamma'_{2}| = 11.9^{+3.2}_{-3.1}, \qquad |\gamma'_{3}| = 6.8^{+1.8}_{-1.8}, \qquad |\gamma'_{2}| = 15.8^{+0.7}_{-0.6}$

$$\begin{split} E_{R}' &= 6820.6^{+3.0}_{-2.7} - i4.0^{+1.7}_{-1.6}, \qquad |\gamma_{1}'| = 2.5^{+0.5}_{-0.6}, \\ |\gamma_{2}'| &= 15.8^{+0.7}_{-0.6}, \qquad |\gamma_{3}'| = 9.1^{+0.4}_{-0.4}, \end{split}$$

23

Values for fit II:

Resonance shapes in the amplitudes

Predictions of event distributions for χ_{c0} - χ_{c0} and χ_{c1} - χ_{c1}

Zhi-Hui Guo(Southeast Univ.)

Anatomy of the internal structures of the exotic hadrons @ Hadron2021

Scrutinizing the X(6825) signal

> Results to include $J/\psi-\psi(3770)$ are also discussed. [ZHG, Oller, PRD '21Feb]

Zhi-Hui Guo(Southeast Univ.)

Anatomy of the internal structures of the exotic hadrons @ Hadron2021

Summary

- Combination of effective-range expansion and Weinberg's compositeness relations provides a powerful tool to analyze the near-threshold resonances.
- Zc(3900)、Zcs(3985) and X(4020) can be simultaneously described in our case and share similar properties.
- X(6900) is demonstrated to behave like a elementary state and the two-meson components [J/ψ-J/ψ, χ_{c0}-χ_{c0}, χ_{c1}-χ_{c1}, J/ψψ(3770)] are subdominant.
- The promising X(6825) state, just below χ_{c0}-χ_{c0} threshold, is predicted, which deserves further verification both in experiment and theory.

Thanks very much for your attention!

Backup slides

Blind use of elastic ERE for X(6900)

Inputs

Model I:
$$M = 6905 \pm 11 \pm 7$$
 MeV,
 $\Gamma = 80 \pm 19 \pm 33$ MeV, [LHCb]
Model II: $M = 6886 \pm 11 \pm 11$ MeV,
 $\Gamma = 168 \pm 33 \pm 69$ MeV,

Near-threshold channels tested

 $\chi_{c0}\chi_{c0}, \chi_{c1}\chi_{c1}$

Outputs	Resonance	Threshold (MeV)	<i>a</i> (fm)	<i>r</i> (fm)	X
	X(6900) I X(6900) II	$\chi_{c0}\chi_{c0}$ (6829.4) $\chi_{c0}\chi_{c0}$ (6829.4)	$-0.18 \pm 0.07 \\ -0.32 \pm 0.06$	$-1.52 \pm 0.69 \\ -0.72 \pm 0.26$	$\begin{array}{c} 0.25 \pm 0.11 \\ 0.53 \pm 0.16 \end{array}$

$$\chi_{c1}-\chi_{c1}$$
 (7021.3) $a = -0.59 \pm 0.04, \quad r = -0.31 \pm 0.02$ (case I),
 $a = -0.51 \pm 0.05, \quad r = -0.28 \pm 0.02$ (case II),

Caveats: It is probably unreliable to rely on elastic ERE to address X(6900). Coupled-channel study at least with J/ψ-J/ψ is needed !

Zhi-Hui Guo(Southeast Univ.)

Anatomy of the internal structures of the exotic hadrons @ Hadron2021

Coupled-channel study: saturation of X & width

Channels included : $J/\psi - J/\psi$ (1), $\chi_{c0} - \chi_{c0}$ (2), $\chi_{c1} - \chi_{c1}$ (3)

Heavy-quark symmetry: $\frac{g_2}{g_3} = \sqrt{3}$, [0⁺⁺ is assumed for X(6900)]

X is needed to solve the two equations!

Zhi-Hui Guo(Southeast Univ.)

Arbitrary X for testing purposes

[ZHG, Oller, PRD '21Feb]

÷			J/ψ-J/ψ	Xco-Xco	Xc1-Xc1			
Channel	$ g_a $ (GeV)	$ g_b $ (GeV)	Γ_1 (MeV)	Γ_2 (MeV)	Γ_3 (MeV)	X_1	X_2	<i>X</i> ₃
X(6900) I								
X = 0.1	$7.1^{+2.2}_{-2.1}$	$6.8^{+0.6}_{-0.8}$	$64.7^{+42.5}_{-33.4}$	$15.2^{+5.3}_{-4.6}$	$0.1^{+0.3}_{-0.1}$	$0.02^{+0.02}_{-0.01}$	$0.06^{+0.01}_{-0.01}$	$0.01^{+0.00}_{-0.00}$
X = 0.4	$0.6^{+5.7}_{-0.5}$	$15.4_{-0.5}^{+0.5}$	$0.4^{+49.7}_{-0.4}$	$79.2^{+11.1}_{-12.5}$	$0.4_{-0.4}^{+0.1}$	$0.00^{+0.01}_{-0.01}$	$0.33_{-0.01}^{+0.01}$	$0.07\substack{+0.01\\-0.01}$
X(6900) II								
X = 0.1	$11.3^{+2.7}_{-3.5}$	$5.0^{+1.6}_{-3.1}$	$160.7^{+83.3}_{-83.6}$	$7.0^{+6.8}_{-6.1}$	$0.3^{+0.1}_{-0.3}$	$0.06^{+0.03}_{-0.03}$	$0.03^{+0.03}_{-0.03}$	$0.01^{+0.01}_{-0.01}$
X = 0.4	$8.9^{+3.0}_{-5.5}$	$15.0^{+0.5}_{-1.0}$	$100.9^{+79.0}_{-86.2}$	$64.3^{+13.7}_{-16.9}$	$2.8^{+3.7}_{-2.6}$	$0.04_{-0.03}^{+0.03}$	$0.31^{+0.03}_{-0.03}$	$0.06^{+0.01}_{-0.01}$
X = 0.9	$1.0^{+6.6}_{-1.0}$	$23.7^{+1.5}_{-1.4}$	$1.3^{+71.9}_{-1.3}$	$159.9^{+44.4}_{-38.9}$	$6.8_{-4.8}^{-2.0}$	$0.00^{+0.03}_{-0.00}$	$0.76^{+0.02}_{-0.02}$	$0.14^{+0.01}_{-0.02}$

> Alternatively a dynamical model respecting the twobody unitarity is constructed to fit the J/ψ - J/ψ event distributions to obtain the couplings g_a and g_b !