

July, 2021

INTERPRETING THE PENTAQUARK STATES

Eric Swanson

Pc(4457) Pc(4440) Pc(4312)

T.J. Burns and E.S. Swanson; writing now

"Kinematic Singularity and Resonance Interpretations of the X(2900)" T.J. Burns and E.S. Swanson; arXiv:2008.12838

"Discriminating Among Interpretations for the X(2900) States" T.J. Burhs and E.S. Swanson; arXiv:2009.05352

LHCb Discovery

 $\Lambda_b^0 \to J/\psi p K^-$

A Recent Molecular Model

Du et al., arXiv:2102.07159

					solution	A		solution	В
	DC	([MeV])	RS	J^P	Pole [MeV]	$g_{ m DC}$	J^P	Pole [MeV]	$g_{ m DC}$
$P_{c}(4312)$	$\Sigma_c \bar{D}$	(4321.6)	Ι	$\frac{1}{2}^{-}$	4314(1) - 4(1)i	2.6(1) + 0.4(2)i	$\frac{1}{2}^{-}$	4312(2) - 4(2)i	2.9(1) + 0.4(2)i
$P_{c}(4380)$	$\Sigma_c^* \bar{D}$	(4386.2)	II	$\frac{3}{2}^{-}$	4377(1) - 7(1)i	2.8(1) + 0.1(1)i	$\frac{3}{2}^{-}$	4375(2) - 6(1)i	3.0(1) + 0.1(1)i
$P_{c}(4440)$	$\Sigma_c \bar{D}^*$	(4462.1)	III	$\frac{1}{2}^{-}$	4440(1) - 9(2)i	3.7(2) + 0.6(1)i	$\frac{3}{2}^{-}$	4441(3) - 5(2)i	3.6(1) + 0.3(1)i
$P_{c}(4457)$	$\Sigma_c \bar{D}^*$	(4462.1)	III	$\frac{3}{2}^{-}$	4458(2) - 3(1)i	2.1(2) + 0.3(1)i	$\frac{1}{2}^{-}$	4462(4) - 5(3)i	2.0(2) + 1.2(3)i
P_c	$\left \Sigma_{c}^{*}\bar{D}^{*}\right $	(4526.7)	IV	$\frac{1}{2}^{-}$	4498(2) - 9(3)i	4.0(1) + 0.4(2)i	$\left \frac{1}{2}\right ^{-}$	4526(3) - 9(2)i	1.5(2) + 1.1(4)i
P_c	$\Sigma_c^* \bar{D}^*$	(4526.7)	IV	$\frac{3}{2}^{-}$	4510(2) - 14(3)i	3.3(2) + 0.6(2)i	$\frac{3}{2}^{-}$	4521(2) - 12(3)i	2.5(2) + 0.9(2)i
P_c	$\Sigma_c^* \bar{D}^*$	(4526.7)	IV	$\frac{5}{2}^{-}$	4525(2) - 9(3)i	1.9(2) + 0.6(7)i	$\frac{5}{2}^{-}$	4501(3) - 6(4)i	3.9(2) + 0.1(2)i

We will revisit this shortly.

A Look at the Data (LHCb cos weighted)

A Look at the Data (LHCb cos weighted)

A Look at the Data (LHCb cos weighted)

A Look at the Data (JLab)

Hiller Blin et al. arXiv:1606.08912 Ali et al, arXiv:1905.10811
$$\begin{split} Bf(Pc(4312) &\to J/\psi p) < 4.6\,\%\,(90\,\%\,C\,.\,L.) \\ Bf(Pc(4440) &\to J/\psi p) < 2.3\,\%\,(90\,\%\,C\,.\,L.) \\ Bf(Pc(4457) &\to J/\psi p) < 3.8\,\%\,(90\,\%\,C\,.\,L.) \end{split}$$

A Look at the Data (JLab J ψ -007)

Sylvester Joosten, GHP21 J/ ψ -007

4% scale uncertainty on cross section limit

RESULTS AND IMPLICATIONS Cross-section at the resonance peak for model-independent upper limits

Upper limit for *P_c* cross section almost order of magnitude below GlueX limit.

Results are inconsistent with reasonable assumptions for true 5-quark states.

Door is still open for molecular states, but will be very hard to measure in photoproduction due to small overlap with both γp initial state and J/ ψp final state

A Look at the Data (ΛD modes)

Amplitude analysis of $\Lambda_{b}^{0} \rightarrow \Lambda_{c}^{+}\overline{D}^{0}K^{-}$ decays and pentaquark searches in the $\Lambda_{c}^{+}\overline{D}^{0}$ system at the LHCb experiment

Alessio Piucci

Heidelberg University, Germany

First observation of the decay $\Lambda_b^0 \to \Lambda_c^+ \bar{D}^{(*)0} K^-$ in preparation of a pentaquark search in the $\Lambda_c^+ \bar{D}^{(*)0}$ system at the LHCb experiment

Marian Stahl (Heidelberg U.) Jul 11, 2018

139 pages Supervisors: Stephanie Hansmann-Menzemer (Heidelberg U.), Klaus Reygers (Heidelberg U.) Thesis: PhD U. Heidelberg (main) (defense: Jul 11, 2018) DOI: 10.11588/heidok.00025126 Report number: CERN-THESIS-2018-176 Experiments: CERN-LHC-LHCb View in: CERN Document Server

http://cds.cern.ch/record/2640677

https://cds.cern.ch/record/2712057/files/10.11588_heidok.00027350.pdf

A Look at the Data (ΛD modes)

Piucci reports Pc fit fraction upper limits in $\Lambda_b \rightarrow \Lambda_c DK$

$$P_{c}(4312)^{+} \text{ fit fraction} < 0.004 (95\% \text{CL})$$

$$P_{c}(4440)^{+}, J^{P} = \frac{1}{2}^{-} \text{ fit fraction} < 0.006 (95\% \text{CL})$$

$$P_{c}(4440)^{+}, J^{P} = \frac{3}{2}^{-} \text{ fit fraction} < 0.0045 (95\% \text{CL})$$

$$P_{c}(4457)^{+}, J^{P} = \frac{1}{2}^{-} \text{ fit fraction} < 0.0045 (95\% \text{CL})$$

$$P_{c}(4457)^{+}, J^{P} = \frac{3}{2}^{-} \text{ fit fraction} < 0.008 (95\% \text{CL})$$

A Look at the Data (ΛD modes)

Combine with measurements of

$$\mathcal{R} \equiv \mathcal{B}(\Lambda_b^0 \to P_c^+ K^-) \mathcal{B}(P_c^+ \to J/\psi \, p) / \mathcal{B}(\Lambda_b^0 \to J/\psi \, pK^-)$$

and branching fractions

$$Bf(\Lambda_b \to J/\psi pK) = 3.2(5) \cdot 10^{-4}$$
$$Bf(\Lambda_b \to D\Lambda_c K) = 1.5 \cdot 10^{-3}$$

to obtain upper limits

$$Bf(P_c \to \Lambda_c D) \lesssim \begin{cases} 6.3, (4312) \\ 2.5, (4440; 1/2^{-}) \\ 1.9, (4440; 3/2^{-}) & Bf(P_c \to J/\psi p) \\ 4.0, (4457; 1/2^{-}) \\ 7.1, (4457; 3/2^{-}) \end{cases}$$

A Recent Molecular Model (ii)

Du et al., arXiv:2102.07159

(i) 3 extraneous resonances?
(ii) artificial production
(iii) restricted fit range/LD?
(iv) 4440 *Λ*D branching fraction?
(v) extreme background model:

f_{1} $(F) = h_{0} \pm h_{1} F^{2} \pm h_{0} F^{4} \pm h_{1} F^{2}$	g_r^2
$J_{\rm bgd}(L) = 00 + 01L + 02L +$	$\overline{(m-E)^2+\Gamma^2/4}$

				solution	A		solution	В
	DC ([MeV])	RS	J^P	Pole [MeV]	$g_{ m DC}$	J^P	Pole [MeV]	$g_{ m DC}$
$P_{c}(4312)$	$\Sigma_c \bar{D}$ (4321.6)	Ι	$\frac{1}{2}^{-}$	4314(1) - 4(1)i	2.6(1) + 0.4(2)i	$\left \frac{1}{2}\right ^{-}$	4312(2) - 4(2)i	2.9(1) + 0.4(2)i
$P_{c}(4380)$	$\Sigma_c^* \bar{D}$ (4386.2)	II	$\frac{3}{2}^{-}$	4377(1) - 7(1)i	2.8(1) + 0.1(1)i	$\frac{3}{2}^{-}$	4375(2) - 6(1)i	3.0(1) + 0.1(1)i
$P_{c}(4440)$	$\Sigma_c \bar{D}^*$ (4462.1)	III	$\frac{1}{2}^{-}$	4440(1) - 9(2)i	3.7(2) + 0.6(1)i	$\frac{3}{2}^{-}$	4441(3) - 5(2)i	3.6(1) + 0.3(1)i
$P_{c}(4457)$	$\Sigma_c \bar{D}^*$ (4462.1)	III	$\frac{3}{2}^{-}$	4458(2) - 3(1)i	2.1(2) + 0.3(1)i	$\frac{1}{2}^{-}$	4462(4) - 5(3)i	2.0(2) + 1.2(3)i
P_c	$\Sigma_c^* \bar{D}^*$ (4526.7)	IV	$\frac{1}{2}^{-}$	4498(2) - 9(3)i	4.0(1) + 0.4(2)i	$\frac{1}{2}^{-}$	4526(3) - 9(2)i	1.5(2) + 1.1(4)i
P_c	$\Sigma_c^* \bar{D}^*$ (4526.7)	IV	$\frac{3}{2}^{-}$	4510(2) - 14(3)i	3.3(2) + 0.6(2)i	$\frac{3}{2}^{-}$	4521(2) - 12(3)i	2.5(2) + 0.9(2)i
P_c	$\Sigma_c^* \bar{D}^*$ (4526.7)	IV	$\frac{5}{2}^{-}$	4525(2) - 9(3)i	1.9(2) + 0.6(7)i	$\frac{5}{2}^{-}$	4501(3) - 6(4)i	3.9(2) + 0.1(2)i

T.J. Burns and E.S. Swanson; writing now

final state interactions

electroweak

$1/2^{-}$	$D_s^*\Lambda_c D$	$D_s^* \Lambda_c D^*$	$\Sigma_c D$	$\Sigma_c D^*$	$\Sigma_c^* D^*$	$J/\psi N$	$\eta_c N$
$D_S^*\Lambda_c D$	А	0	0	$\sqrt{3}B$	$\sqrt{6}B$	$\frac{\sqrt{3}}{2}D$	D/2
$D_s^* \Lambda_c D^*$		А	$\sqrt{3}B$	-2B	$\sqrt{2}B$	$-\frac{1}{2}$	$\sqrt{3}D/2$
$\Sigma_c D$			C_a	$\frac{2}{\sqrt{3}}C_b$	$-\sqrt{2/3}C_b$	$-\frac{1}{2\sqrt{3}}E$	E/2
$\Sigma_c D^*$				$C_a - \frac{4}{3}C_b$	$-\frac{\sqrt{2}}{3}C_b$	$\frac{5}{6}E$	$-E/2\sqrt{3}$
$\Sigma_c^* D^*$					$C_a - \frac{5}{3}C_b$	$\frac{\sqrt{2}}{3}E$	$E\sqrt{2/3}$
$J/\psi N$						0	0
$\eta_c N$							0

final state interactions

$3/2^{-}$	$D_s^* \Lambda_c D^*$	$\Sigma_c^* D$	$\Sigma_c D^*$	$\Sigma_c^* D^*$	$J/\psi N$
$D_s^* \Lambda_c D^*$	A	$-\sqrt{3}B$	B	$\sqrt{5}B$	D
$\Sigma_c^* D$		C_a	$\frac{C_b}{\sqrt{3}}$	$\sqrt{\frac{5}{3}}C_b$	$-\frac{E}{\sqrt{3}}$
$\Sigma_c D^*$			$C_a + \frac{2}{3}C_b$	$-\frac{\sqrt{5}}{3}C_b$	$\frac{E}{3}$
$\Sigma_c^* D^*$			-	$C_a - \frac{2}{3}C_b$	$\frac{\sqrt{5}}{3}E$
$J/\psi N$					0

$1/2^+$	$D_s^*\Lambda_c'D$	$D_s^*\Lambda_c'D^*$	$\Sigma_c D(P)$	$\Sigma_c D^*(P)$	$J/\psi N(2P)$	$J/\psi N(4P)$	$\eta_c N$
$D_s^*\Lambda_c'D$	f_a	$2f_b/\sqrt{3}$	0	0	$g_a/6\sqrt{3}-4g_b/3\sqrt{3}$	$(g_a + g_b)\sqrt{2}/3\sqrt{3}$	$g_a/2$
$D_s^*\Lambda_c'D^*$		$f_a - \frac{4}{3}f_b$	0	0	$-5g_a/18 - 4g_b/9$	$-10\sqrt{2}g_a/18 + \sqrt{2}g_b/9$	$-g_a/2\sqrt{3}$
$\Sigma_c D$			0	0	0	0	0
$\Sigma_c D^*$				0	0	0	0
$J/\psi N(2P)$					0	0	0
$J/\psi N(4P)$						0	0
$\eta_c N$				10			0

(i) employs the preferred production mechanism (ii) $\eta_c N$ predictions possible (iii) other decay mode predictions possible (iv) fitting the full energy range constrains the model (v) $J/\psi N$ branching fractions are controlled by D & E (vi) 4412 (1/2⁻) : $\Lambda_c D$ has zero coupling (vii) 4440 (3/2⁻) : $\Lambda_c D$ has D-wave coupling (viii) 4457 ($1/2^{\pm}$) : cusp(s) explanation (ix) $1/2^{-}$ and $3/2^{-} \Sigma_{c}^{*} D^{*}$ resonances are eliminated by -Cb (x) shoulder and 4450 hump is due to $1/2^{-} \Sigma_{c} D - \Sigma_{c} D^{*}$ interactions + threshold cusp

 $\Lambda_b \to \eta_c p K$

 $\gamma N \rightarrow J/\psi N$

 $\gamma N \rightarrow D \Lambda_c$

 $\gamma N \to D^* \Lambda_c$

Conclusions & Observations

- Data exclude many models.
- Good fits obtained by insufficiently constrained models should not be taken as evidence in favour of the model assumptions.
- "Triangles" explain 'kinks' at $\Lambda_c D$, $\Lambda'_c D^*$ and possibly the 4457 peak ($\Lambda'_c D$).
- Weakly bound $\Sigma_c^{(*)} D^{(*)}$ resonances are required:
 - 4312 (Σ_cD, 1/2-)
 - 4380 (Σ_c*D, 3/2-)
 - 4440 (Σ_cD*, 3/2-)
 - $4457(1/2-\Sigma_c D^* \text{ threshold cusp / } 1/2 + \text{ triangle})$

