

Studies of the X(3872) at Belle II

HADRON2021, Universidad Nacional Autónoma de México - 26-30. July. 2021

Elisabetta Prencipe, JLU – University of Giessen (DE)

Outline

- Introduction
- Overview on the X(3872) results
- The Belle II detector
- Analysis of the $B^{\pm,0} \rightarrow J/\psi \pi^+\pi^-K^{\pm,0}$ decays at Belle II
- Analysis of $B^{\pm} \rightarrow D^0 \overline{D}{}^0 \pi^0 K^{\pm}$
- Perspectives with 50 ab⁻¹
- Summary

Introduction

- X(3872): observed by Belle in $B^{\pm} \rightarrow J/\psi \pi^{+}\pi^{-}K^{\pm}$ decays in 2003
- Most cited Belle paper ever: PRL 91 (2003) 262001, 1096 citations
- Quantum numbers of the X(3872) do not fit into quark models
- Confirmed J^{PC} = 1⁺⁺ by LHCb in 2013 (10 years later!)
- Observed in B decays, $p\overline{p}$, pp, $e^+e^- \rightarrow \gamma X$

What is then the X(3872)?

Unluckily a charmonium, but....

Overview of the X(3872)

X(3872) observed in different decay modes: J/ ψ π⁺π⁻, J/ ψ π⁺π⁻π⁰, D⁰D^{*0}, γJ/ ψ ...

Well established!

Identity card of the X(3872), from PDG averaged values: $M_X = 3861.75 \pm 0.06 \text{ MeV/c}^2$ $\Gamma = 1.19 \pm 0.21 \text{ MeV}$ $J^{PC} = 1^{++}$

Total width measurement can constrain theoretical models.

Can Belle II measure it?

Can Belle II distinguish between different parameterizations (BW, Flatté)?

A detailed analysis of the X(3872) line shape, using the Flatté parametrization, is more appropriate than the Breit-Wigner (BW) form for states near an S-wave strongly coupled threshold

HADRON 2021

- From B factories: X(3872) in B decays, and recently in $\gamma\gamma^*$
- FNAL, LHC: X(3872) also in prompt processes

- From B factories: X(3872) in B decays, and recently in γγ*
- FNAL, LHC: X(3872) also in prompt processes

- production rate at the Tevatron too large by orders of magnitude for the X(3872) to be a weakly **bound charm-meson molecule**. New theoretical explanation: **re-scattering effects** \rightarrow additional interactions between the D mesons in the final state could lead to significantly enhanced X(3872) production rates.

Artoisenet, Braaten, PRD 81 (2010) 114018

Bignamini et al, PRL 103 (2009) 162001

- re-scattering could be significant if the relative momenta of the D mesons are small, and at large transverse momenta (pT, no contribution is expected). Therefore, measuring the pt-dependence of the X(3872) production rate could give insights about the validity of the "charm-meson molecule" hypothesis.

CMS studied X(3872) \rightarrow J/ $\psi \pi^+ \pi^-$ and its properties with thousand yield

CMS, JHEP 04 (2013) 154

- X(3872) copiously produced in prompt processes rather than B mesons (only 26% in B decays)
- X(3872) \rightarrow J/ $\psi\pi^+\pi^-$: the decay proceeds through a ρ meson ($\pi^+\pi^-$ pairs)
- the predicted pt-dependence of the X(3872) is actually larger than the measured rate, but fairly modeled

- From B factories: X(3872) in B decays, and recently in $\gamma\gamma^*$
- FNAL, LHC: X(3872) also in prompt processes

• LHCb recently scrutinized the nature of the X(3872) by studying its multiplicity dependent relative suppression compared to a conventional charmonium state, *i.e.* $\psi(2S)$.

Hadronic molecule \Rightarrow very weakly bound with a large radius \sim 10 fm

$$M_{\rm X(3872)} - M_{ar{D}} - M_{D^*} = 0.1 \pm 0.27~{
m MeV}$$

Compact tetraquark \Rightarrow tightly bound with small radius \sim 1 fm

HADRON 2021

- From B factories: X(3872) in B decays, and recently in $\gamma\gamma^*$
- FNAL, LHC: X(3872) also in prompt processes
- LHCb:
 - the prompt ratio decreases with the multiplicity
 - → stronger suppression of X(3872) over ψ (2S)
 - non-prompt ratio constant in multiplicity

Model by Esposito et al (arXiV: 2006.15044) favors the compact tetraquark scenario.
 Braaten et al (PRD 103 (2021) 071901) suggests it is a charm-meson molecule.

The X(3872) at Belle

charged

partners

PRD 84 (2011) 052004, 772M BB pairs

The X(3872) at Belle

PRL 97 (2006) 162002, 414 fb⁻¹

Signal	$\epsilon \mathcal{B} \times 10^4$	N_{obs}	sig, σ	$\mathcal{B} \times 10^4$
$B \to D^0 \overline{D}{}^0 \pi^0 K$	$2.12{\pm}0.10$	$24.1{\pm}6.1$	6.4	$1.27 \pm \ 0.31^{+0.22}_{-0.39}$
$B^+ \to D^0 \overline{D}{}^0 \pi^0 K^+$	$3.62{\pm}0.14$	$17.4{\pm}5.2$	5.0	$1.07 \pm \ 0.31^{+0.19}_{-0.33}$
$B^0 ightarrow D^0 \overline{D}{}^0 \pi^0 K^0$	$0.84{\pm}0.04$	$6.5{\pm}2.6$	4.6	$1.73 \pm 0.70^{+0.31}_{-0.53}$

What is then the X(3872)?

The Belle II detector

Data planning at Belle II

- Belle I
- Summer run 2021 concluded: 213.49 fb⁻¹
- Planned 50 ab⁻¹
- Monthly luminosity record in May 2021: 40.3 fb⁻¹
- Peak luminosity record: 3.1 x 10³⁴ cm⁻² s⁻¹

L_projection_2019-2020(6.5mo)-2031_30d_PXD2022_QCS-RF2026_2020_29

Elisabetta Prencipe

X(3872) at Belle II: analysis strategy

- With >30 fb⁻¹: analysis feasible! extrapolation from Belle
- Analysis conducted with 62.8 fb⁻¹ @ Υ (4S), Belle II data
- Rigorously followed strategy of 'veiled-data' analysis
- **Reconstructed:** $B^{\pm,0} \rightarrow J/\psi\pi^+\pi^-K^{\pm,0}$, X(3872) $\rightarrow J/\psi\pi^+\pi^-$
- Control channel: $B^{\pm,0} \rightarrow \psi(2S)K^{\pm,0}$
- Goal of this study:
 - rediscovery the X(3872)
 - Branching Fraction measurement

Rediscovery channel, yet! Sample too small for new charmonium results

X(3872) at Belle II: event selection

$$B^{+/0} \xrightarrow{X(3872)} \pi^{+} \varphi^{-}/\mu^{-}$$

$$K^{+}/K^{0}_{s} \longrightarrow \pi^{+} \pi^{-}$$

Tracks: PID for leptons and pions POCA selection: d0<1.0 cm, z0<3.0cm

K⁰s:

Vertex fit 490< $m_{\pi+\pi}$ <506 MeV/c²

 $\begin{array}{l} J/\psi \\ 3.070 < m_{\mu\mu} < 3.117 \ GeV/c^2 \\ 3.065 < m_{ee} < 3.117 \ GeV/c^2, \ with \ bremss. \ recovery \\ \rightarrow \ mass \ fit \ constraint \ is \ applied \end{array}$

B^{±,0}

 $M_{bc} (\equiv \sqrt{(s/2)^2 - (p_B^{cms})^2}) > 5.27 \text{ GeV/c}^2$ $|\Delta E (\equiv s/2 - E_B^{cms})| < 0.02 \text{ GeV/c}^2$

Continuum suppression: $R_2 < 0.4$

 $M_{\pi^+\pi^-}^{meas} - M_{\ell^+\ell^-\pi^+\pi^-}^{meas} + m_{J/\psi} > -0.150 \text{ GeV}/c^2$

Retains ~90% of signal while suppressing bkg by ~75% Reduction in mis-ID pions

X(3872) at Belle II: control sample study

Unbinned maximum likelihood fit with triple-Gaussian + 1st order Chebyshev polynomial

X(3872) at Belle II: control sample study

	$B^+ \to K^+ \psi(2S)$	$B^0 \to K_s^0 \psi(2S)$
Integrated Luminosity [fb ⁻¹]	62.79 4 7 <u>+</u> 0.0051	62.79 4 7 <u>+</u> 0.0051
Signal yield /∫ <i>Ldt</i> [fb]	6.51 ± 0.37	1.66 ± 0.18
Signal efficiency [%]	22.69 ± 0.16	17.40 ± 0.17
Obtained Branching Fraction $[\times 10^{-4}]$	6.08 ± 0.37	6.18 ± 0.69
Obtained / World Average	0.982 ± 0.069	1.07 ± 0.15

World averages: $BF(B^+ \to K^+\psi(2s)) = (6.19 \pm 0.22) \times 10^{-4}, BF(B^0 \to K^0\psi(2s)) = (5.8 \pm 0.5) \times 10^{-4}$

- Statistics uncertainties, only
- A Main systematic effects: tracking, K_{s}^{0} reconstruction, $n_{B\overline{B}}$ (2.1%)

X(3872) at Belle II: results

Systematics not included, yet

HADRON 2021

X(3872): Belle II vs Belle

	Belle		Belle2 (This analysis)		
	Signal Yield / $\int Ldt$ [fb ⁻¹]	Signal Efficiency [%]	Signal Yield / $\int Ldt$ [fb ⁻¹]	Signal Efficiency [%]	
$B^+ \to K^+ \psi(2S)$	5.027 ± 0.090	17.8 ± 0.2	6.51 ± 0.37	22.7 ± 0.2	
$B^0 \to K^0_s \psi(2S)$	1.145 ± 0.042	14.1 ± 0.2	1.66 ± 0.18	17.4 ± 0.2	
$B \rightarrow KX(3872)$	0.212 ± 0.021	19.1 ± 0.2	0.194 ± 0.062	22.9*	

*still reduced statistics

Improvement!

X(3872) total width

- Known upper limit: $\Gamma < 1.2$ MeV estimated from X(3872) → J/ψπ⁺π⁻ on full Belle data sample
- Very promising: X(3872) $\rightarrow D^0 \overline{D^*}{}^0$

- Very low Q value → the mass resolution is extremely good.
- Expected great improvement in the width measurement with 50 ab⁻¹

HADRON 2021

Summary

- Belle II collected ~213 fb⁻¹ integrated luminosity data
- Peak luminosity: 3.1 x 10³⁴ cm⁻² s⁻¹
- Interesting results in charmonium spectroscopy expected in the next years
- Rediscovery channels confirm good status of the detector
- X(3872): with 62 fb⁻¹ data, close to the observation of X(3872) in $B^{\pm} \rightarrow J/\psi \pi^{+}\pi^{-}K^{\pm}$; 4.6 σ
- Very promising channel for the width measurement: X(3872) $\rightarrow D^0 \overline{D}^0 \pi^0$
 - precision measurement possible at Belle II;
 - we might be able to compare different parameterizations.
- Next step: $X(3872) \rightarrow \psi(2S)\gamma$. Photon detection not a problem at Belle II!

B2GM June 2019 shutterstock.com · 1418233783