A Diffusion Monte Carlo technique applied to multiquark systems

Universidad Pablo de Olavide Sevilla M.C. Gordillo F. De Soto J. Segovia Goal: Study tetraquarks using a chiral quark model

The interaction between quarks is described by an non-relativistic *effective* Hamiltonian

$$H = \sum_{i=1}^{n-\text{part.}} \left(m_i + \frac{\vec{p}_i^2}{2m_i} \right) - T_{\text{CM}} + \sum_{j>i=1}^{n-\text{part.}} V(\vec{r}_{ij}),$$
$$V(\vec{r}_{ij}) = V_{\text{CON}}(\vec{r}_{ij}) + V_{\text{OGE}}(\vec{r}_{ij}) + V_{\chi}(\vec{r}_{ij})$$

For tetraquaks made up <u>only</u> of c and b quarks and their antiparticles

 $\delta^{(3)}(\vec{r}_{ij}) \to \kappa \frac{e^{-r_{ij}^2/r_0^2}}{\pi^{3/2}r_0^3},$

$$V(\vec{r}_{ij}) = V_{\text{OGE}}(\vec{r}_{ij}) + V_{\text{CON}}(\vec{r}_{ij}).$$

$$V_{\text{OGE}}(\vec{r}_{ij}) = \frac{1}{4} \alpha_s(\vec{\lambda}_i \cdot \vec{\lambda}_j) \left[\frac{1}{r_{ij}} - \frac{2\pi}{3m_i m_j} \delta^{(3)}(\vec{r}_{ij})(\vec{\sigma}_i \cdot \vec{\sigma}_j) \right] \quad \boldsymbol{\sigma}_i \ \boldsymbol{\sigma}_j \quad \begin{array}{l} \text{Pauli matrices} \\ \text{(spin)} \end{array}$$

 $V_{\text{CON}}(\vec{r}_{ij}) = (br_{ij} + \Delta)(\vec{\lambda}_i \cdot \vec{\lambda}_j), \qquad \lambda_i \ \lambda_j \ \text{Gell-Mann matrices (color)}$

Parameters taken from

B. Silvestre-Bragg Few-Body Syst. 20 1 (1996)

For tetraquarks with light quarks (u,d) and/or their antiparticles

$$V_{\chi}(\vec{r_{ij}}) = V_{\sigma}(\vec{r_{ij}}) + V_{\pi}(\vec{r_{ij}}) + V_{\eta}(\vec{r_{ij}})$$

$$V_{\sigma} (\vec{r}_{ij}) = -\frac{g_{ch}^2}{4\pi} \frac{\Lambda_{\sigma}^2}{\Lambda_{\sigma}^2 - m_{\sigma}^2} m_{\sigma} \left[Y(m_{\sigma}r_{ij}) - \frac{\Lambda_{\sigma}}{m_{\sigma}} Y(\Lambda_{\sigma}r_{ij}) \right], \qquad \mathbf{\sigma}_{\mathbf{i}} \mathbf{\sigma}_{\mathbf{j}} \mathbf{\sigma}_{$$

Diffusion Monte Carlo (DMC)

Technique used in many-body condensed matter physics to obtain the ground state (T = 0) of a system of interacting particles

M. H. Kalos, Phys. Rev. A 2 250 (1970)

DMC uses the analogy between the imaginary form of the timedependent (it → t) Schrödinger equation and a diffusion equation for finding solutions of the time-independent Schrödinger equation

$$-\frac{\partial \Psi_{\alpha'}(\boldsymbol{R},t)}{\partial t} = (H_{\alpha'\alpha} - E_s)\Psi_{\alpha}(\boldsymbol{R},t),$$

 ψ_{α} (R,t) is the exact wavefunction for channel α . We used instead

$$f_{\alpha}(R,t) = \psi(R) \psi_{\alpha}(R,t)$$

Trial function: Information known a priori Channel: Each possible spin-color function compatible with the symmetry of the tetraquark

ψ (R) is the exact solution of a simplified form of the OGE potential

$$V_{\text{OGE}}(\vec{r}_{ij}) = \frac{1}{4} \alpha_s(\vec{\lambda}_i \cdot \vec{\lambda}_j) \left[\frac{1}{r_{ij}} - \frac{2\pi}{3m_j m_j} \delta^{(3)}(\vec{r}_{ij})(\vec{\sigma}_i \cdot \vec{\sigma}_j) \right]$$

$$\psi(\mathbf{R}) = \prod_{i < j} \phi(\vec{r}_{ij}) = \prod_{i < j} \exp(-a_{ij}r_{ij}),$$
 1s orbital

 $f_{\alpha}(R,t) = \psi(R) \quad \psi_{\alpha}(R,t) \Longrightarrow \psi_{\alpha}(R,t) = f_{\alpha}(R,t)/\psi(R)$

Substituting that into the Schrödinger equation

$$\begin{aligned} -\frac{\partial f_{\alpha'}(\boldsymbol{R},t)}{\partial t} = & -\frac{1}{2m} \nabla_{\boldsymbol{R}}^{2} f_{\alpha'}(\boldsymbol{R},t) + \frac{1}{2m} \nabla_{\boldsymbol{R}} [F(\boldsymbol{R}) f_{\alpha'}(\boldsymbol{R},t)] \\ &+ [E_{L}(\boldsymbol{R}) - E_{s}] f_{\alpha'}(\boldsymbol{R},t) + V_{\alpha'\alpha}(\boldsymbol{R}) f_{\alpha}(\boldsymbol{R},t) \end{aligned} \qquad \begin{array}{l} \text{Potential depending} \\ \text{on the channels} \end{array}$$

$$E_L(\mathbf{R}) = \psi(\mathbf{R})^{-1} H_0 \psi(\mathbf{R}),$$
$$F(\mathbf{R}) = 2\psi(\mathbf{R})^{-1} \nabla_{\mathbf{R}} \psi(\mathbf{R})$$

Part of the Hamiltonian independent of the channel

Formal solution for a single channel

$$f_{\alpha'}(\mathbf{R}',t+\Delta t) = \sum_{\alpha} \int d\mathbf{R} \, G_{\alpha'\alpha}(\mathbf{R}',\mathbf{R},\Delta t) f_{\alpha}(\mathbf{R},t).$$

The formal solution for several channels is

$$\mathcal{F}(\mathbf{R},t) = \sum_{\alpha} f_{\alpha}(\mathbf{R},t),$$
 Green function
independent of the channe

$$\begin{split} \mathcal{F}(\mathbf{R}', t + \Delta t) &= \int d\mathbf{R}(\mathbf{R}' | e^{-A\Delta t} | \mathbf{R}) \sum_{\alpha' \alpha} e^{-V_{\alpha' \alpha}(\mathbf{R}) \Delta t} f_{\alpha}(\mathbf{R}, t) \\ &= \int d\mathbf{R} \langle \mathbf{R}' | e^{-A\Delta t} | \mathbf{R} \rangle \omega(\mathbf{R}, t) \mathcal{F}(\mathbf{R}, t), \\ \omega(\mathbf{R}, t) &= \frac{\sum_{\alpha' \alpha} e^{-V_{\alpha' \alpha}(\mathbf{R}) \Delta t} f_{\alpha}(\mathbf{R}, t)}{\sum_{\alpha} f_{\alpha}(\mathbf{R}, t)}. \quad \begin{array}{l} \text{Weight asigned to} \\ \text{each configuration} \end{array}$$

Quarks are fermions \Rightarrow The wavefunction should be antisymmetric with respect to the interchange of identical quarks

$$\begin{split} |\bar{3}_{12}3_{34}\rangle &= \frac{1}{\sqrt{12}} (+|rg\bar{r}\,\bar{g}\rangle + |gr\bar{g}\,\bar{r}\rangle - |rg\bar{g}\,\bar{r}\rangle \\ &- |gr\bar{r}\,\bar{g}\rangle + |rb\bar{r}\,\bar{b}\rangle + |br\bar{b}\,\bar{r}\rangle \\ &- |rb\bar{b}\,\bar{r}\rangle - |br\bar{r}\,\bar{b}\rangle + |gb\bar{g}\,\bar{b}\rangle \\ &+ |bg\bar{b}\,\bar{g}\rangle - |gb\bar{b}\,\bar{g}\rangle - |bg\bar{g}\,\bar{b}\rangle), \end{split}$$

$$\begin{split} |6_{12}\bar{6}_{34}\rangle &= \frac{1}{\sqrt{6}} [+|rr\bar{r}\,\bar{r}\,\rangle + |gg\bar{g}\,\bar{g}\rangle + |bb\bar{b}\,\bar{b}\,\rangle \\ &+ \frac{1}{2} (+|rg\bar{r}\,\bar{g}\rangle + |gr\bar{g}\,\bar{r}\rangle + |rg\bar{g}\,\bar{r}\rangle \\ &+ |gr\bar{r}\,\bar{g}\rangle + |rb\bar{r}\,\bar{b}\rangle + |br\bar{b}\,\bar{r}\rangle \\ &+ |rb\bar{b}\,\bar{r}\rangle + |br\bar{r}\,\bar{b}\rangle + |gb\bar{g}\,\bar{b}\rangle \\ &+ |bg\bar{b}\,\bar{g}\rangle + |gb\bar{b}\,\bar{g}\rangle + |bg\bar{g}\,\bar{b}\rangle)], \end{split}$$

The color functions are the colorless eigenvectors of $F^2 = (\sum \lambda_i / 2)^2$

Antisymmetric with respect to the interchange $1 \leftrightarrow 2$ and $3 \leftrightarrow 4$

Symmetric with respect to the interchange $1 \leftrightarrow 2$ and $3 \leftrightarrow 4$ The spin functions are the eigenvectors of $S^2 = (\sum \sigma_i / 2)^2$ for a given value of the total spin of the tetraquark (S= 0, 1,2)

$$\begin{aligned} |\chi_{S=0,S_z=0}\rangle_{\mathrm{SS}} &= \frac{1}{\sqrt{12}} (+2|\downarrow\downarrow\uparrow\uparrow\rangle + 2|\uparrow\uparrow\downarrow\downarrow\rangle \\ &-|\downarrow\uparrow\uparrow\downarrow\rangle - |\uparrow\downarrow\downarrow\uparrow\rangle \\ \mathrm{S} &= 0 \qquad + |\downarrow\uparrow\downarrow\downarrow\uparrow\rangle - |\uparrow\downarrow\downarrow\uparrow\rangle), \end{aligned}$$

$$\begin{aligned} |\chi_{S=0,S_z=0}\rangle_{AA} &= \frac{1}{2} \left(-|\downarrow\uparrow\downarrow\uparrow\rangle - |\downarrow\uparrow\uparrow\downarrow\rangle \right) \\ &- |\uparrow\downarrow\downarrow\uparrow\rangle + |\uparrow\downarrow\uparrow\downarrow\rangle \end{aligned}$$

Symmetric with respect to the interchange $1 \leftrightarrow 2$ and $3 \leftrightarrow 4$

Antisymmetric with respect to the interchange $1 \leftrightarrow 2$ and $3 \leftrightarrow 4$ $f_{\alpha}(R,t)$ is not an analytical function but a set of *walkers*

Set of coordinates of the quarks and the coefficients of the different channels, c_{α} . They evolve in imaginary time according to a diffusion process that depends on the particular $\psi(R)$ we have chosen

That diffusion process is directed to the zones of the phase space where $\psi(R)$ is larger \Rightarrow importance sampling

Examples of functions with the right symmetry

The DMC algorithm provides both energies (masses) and structural information (distances between particles and probability distributions)

It is NOT variational in nature \Rightarrow It is able to correct the initial approximation (trial function) to give the exact ground state of the tetraquark by including all the possible correlations between quarks

Our initial approximation does not contain any particular grouping of quarks nor any other limitation beyond the derived from the Pauli principle

$$\psi(\mathbf{R}) = \prod_{i < j} \phi(\vec{r}_{ij}) = \prod_{i < j} \exp(-a_{ij}r_{ij}),$$
$$X_{\text{spin-color}} = c_1 |\chi_{S=0}\rangle_{SS} \otimes |\bar{3}_c 3_c\rangle_{AA} + c_2 |\chi_{S=0}\rangle_{AA} \otimes |6_c \bar{6}_c\rangle_{SS}$$

Proof of concept: mass of heavy mesons...

	$n^{2S+1}L_J$	J^{PC}	DMC	VAR [54]	EXP [13]
$\eta_c \ J/\psi$	$\frac{1^{1}S_{0}}{1^{3}S_{1}}$	0 ⁻⁺ 1	3005 3101	3006.6 3102.1	$\begin{array}{c} 2983.9 \pm 0.5 \\ 3096.900 \pm 0.006 \end{array}$
$egin{array}{c} B_c \ B_c^* \end{array}$	$\frac{1^{1}S_{0}}{1^{3}S_{1}}$	0 ⁻⁺ 1	6292 6343	6293.5	$\begin{array}{c} 6274.9 \pm 0.8 \\ \ldots \end{array}$
$\eta_b \ \Upsilon(1S)$	$\frac{1^{1}S_{0}}{1^{3}S_{1}}$	0 ⁻⁺ 1	9424 9462	9427.9 9470.4	$\begin{array}{c} 9398.7 \pm 2.0 \\ 9460.30 \pm 0.26 \end{array}$

[54] G.J. Yang et al PRD <u>100</u> 096013 (2018)[13] PDG PRD <u>98</u> 030001 (2018)

... and of heavy baryons

		1.0 7 0.1		
Baryon	$^{2S+1}L_J$	J^P	DMC	Ref. [59]
Ω_{ccc}^{++}	${}^{4}S_{3/2}$	$3/2^{+}$	4798	4799
Ω_{cch}^+	${}^{2}S_{1/2}$	$1/2^{+}$	8018	8019
Ω_{chh}^{0}	${}^{2}S_{1/2}$	$1/2^{+}$	11215	11217
Ω_{bbb}^{-}	${}^{4}S_{3/2}$	$3/2^{+}$	14398	14398

[59] B. Silvestre-Brac, Few-Body Syst. 20, 1 (1996).

$cc \overline{cc}$

Masses obtained with the same effective potential

J^{PC}	DMC	VAR [54]
0^{++}	6351	6371
1+-	6441	6450
2^{++}	6471	6479

The inclusion of correlations decreases the mass

> M.C. Gordillo et al PRD <u>102</u> 114007 (2020)

	bb bb					cb cb		
<i>IPC</i>	DMC	VAR [4	541	J^{PC}	DMC	[33]	[35]	[36]
	DIVIC	VIII L.		0^{++}	12 534	12854	12 359	13 390
)++	19 199	1924	3	1+-	12 5 10	12 881	12 424	13 478
[+-	19276	1931	1	1^{++}	12 569	12933	12 485	13 510
2++	19 289	19 32	5	2^{++}	12 582	12933	12 566	13 590
-		cc cb		bb bc				
I^P	DMC	[33]	[36]	DMC	[33]	[36]		
\mathbf{O}^+	9615	9715	10 144	16 040	16 141	16 823		
1^{+}	9610	9727	10 174	16013	16 148	16 840		
2^{+}	9719	9768	10 273	16 129	16 176	16917		

[54] G.J. Yang et al PRD <u>100</u> 096013 (2018). [35] A. Berezhnoy et al, PRD <u>86</u>, 034004 (2012).
[33] M.-S. Liu et al PRD <u>100</u>, 016006 (2019) [36] L. Reinders et al , Phys. Rep. <u>127</u>, 1 (1985).

Application to X(3872)

Mass at the D⁰ D⁰* threshold

Quantum numbers $J^{PC} = 1^{++}$

Decays at the same ratio into $\rho J/\psi$ and $\omega J/\psi$

Radiative decays into $\Upsilon J/\psi$ and $\Upsilon \psi(2S) \Longrightarrow$ at least partial c \overline{c} component

• Experimental data

Description of X(3872) as a $c\overline{c}$ nn tetraquark (n= u,d) \Rightarrow DMC calculation

	alba (1996). Si	2012/16	1.0403	
	M_e [10]	M_f	M_{χ}	
ρ	775	770	770	
ω	783	769	770	
D	1868	1863	1863	3877 MeV
D^*	2009	2016	2016	3879 MeV
J/ψ	3097	3101	3101	
$c\bar{c}u\bar{u} \ (I=0)$	-	3834	3874	Lower mass
$c\bar{c}u\bar{u} \ (I=1)$	-	3842	3874	
	Experiment	Full calculation	"Flavorle data	ss"

Structure of the X(3872) as a tetraquark $\Rightarrow \omega + J/\psi$ or $\rho + J/\psi$

A similar pairing appears also in all-heavy tetraquarks with similar quantum numbers

 $|X(3872)\rangle_{\text{color}} = c_1 |\bar{3}_{nc} 3_{\bar{n}\bar{c}}\rangle_{\text{color}} + c_2 |6_{nc}\bar{6}_{\bar{n}\bar{c}}\rangle_{\text{color}} \qquad |X(3872)\rangle_{\text{color}} \approx |1_{c\bar{c}}\bar{1}_{n\bar{n}}\rangle_{\text{color}}$

Sumarizing ...

We have used the diffusion Monte Carlo technique to describe tetraquarks in the chiral quark model considering all the couplings between channels

In the X(3872) case, it appears that a meson-meson molecular configuration is preferred but, contrary to the usual assumption of a D⁰ $\overline{D^0}$ * molecule our formalism produces $\omega + J/\psi$ (I=0) or $\rho + J/\psi$ (I=1) clusters as the most stable ones

The DMC technique is scalable and it is expected to work for larger quark clusters (penta- and hexaquarks)

$D^{0}D^{0*}$

