Pc(4312), Pc(4380), and Pc(4457) as double triangle cusps

Phys. Rev. D 103, L111503 (2021)

Satoshi Nakamura

University of Science and Technology of China

Introduction

P_c signals in $\Lambda_b^0 \to J/\psi p K^-$ data

LHCb, PRL 122, 222001 (2019)

Spectrum bumps suggest:

Peaks at slightly below $\Sigma_c^{(*)} \overline{D}^{(*)}$ thresholds $\Sigma_c : \Sigma_c(2455)$ $\Sigma_c^* : \Sigma_c(2520)$

 $\rightarrow \Sigma_c^{(*)} \overline{D}^{(*)}$ bound states (hadron molecule) ?

Other possibilities also proposed:

Compact constituent pentaquark, hadrocharmonium

Previous analysis of LHCb data $(M_{J/\psi p})$ distribution)

Fernandez-Ramirez et al. (JPAC), PRL 123, 092001 (2019)

Two-channel ($\Sigma_c \overline{D}$ - $J/\psi p$) K-matrix model for Pc(4312)

Pc(4312) is interpreted as a virtual state pole

Du et al. (Germany-China group), PRL 124, 072001 (2020)

 $\Sigma_c^{(*)} \overline{D}^{(*)}$ coupled-channel model heavy quark spin symmetry + one-pion-exchange

Pc(4312), Pc(4440), Pc(4380), Pc(4457) as $\Sigma_c^{(*)} \overline{D}^{(*)}$ bound states

P_c as kinematical effect

Triangle singularities (TS) explored to interpret Run I data

Guo et al., PRD 92, 071502(R) (2015); Liu et al., PLB 757, 231 (2016)

TS conditions: process is kinematically allowed at classical level

(i) on-shell intermediate states (ii) collinear internal momenta

(iii)
$$v_{\overline{D}^{(*)}} \geq v_{\Lambda_c^*}$$

Double triangle singularity (DTS)

Kinematical condition for DTS: kinematically classical process is allowed (Coleman-Norton theorem)

All intermediate states can be on-shell simultaneously (Σ_c case) \rightarrow leading singularity

One (or more) state is necessarily off-shell (Σ_c^* case) \rightarrow lower-order singularity

This work

- DTS causes anomalous threshold cusp significantly more singular than ordinary threshold cusp
- DT amplitudes reproduce Pc signals of LHCb data through interference with common (one-loop, tree) mechanisms
- Only Pc(4440) is required as a resonance, with width and strength significantly smaller than LHCb analysis result

Singular behavior of double triangle amplitude

Singular behavior of double triangle amplitude

Singular behavior of double triangle amplitude

How double triangle amplitude appears as Pc?

Analysis of LHCb data

Setup

$$\Sigma_c(2455)\overline{D}(1/2^-)$$

$$\Sigma_c(2520)\overline{D}(3/2^-)$$

$$\Sigma_c(2455)\overline{D}^*(1/2^-)$$

$$\Sigma_c(2455)\overline{D}^*(3/2^-)$$

$$\Sigma_c(2520)\overline{D}^*(1/2^-)$$

$$\Sigma_c(2520)\overline{D}^*(3/2^-)$$

$$\Lambda_c^{(*,**)} \overline{D}^{(*)} (J^P)$$

$$\Lambda_c \overline{D}^* (1/2^-)$$

$$\Lambda_c(2593)\overline{D} (1/2^+)$$

$$\Lambda_c(2625)\overline{D}~(3/2^+)$$

2×6 fitting parameters :
$$c_{\Lambda_c \, \overline{D}^{(*)} \overline{K}^*, \Lambda_b} \times c_{\psi p, \Sigma_c^{(*)} \overline{D}^{(*)}}^P$$

(complex couplings)

2×3 fitting parameters :
$$c_{\Lambda_c^{(*)}\overline{D}^{(*)}\overline{K},\Lambda_b} \times c_{\psi p,\Lambda_c^{(*)}\overline{D}^{(*)}}^{J^P}$$

Only color-favored weak vertices are used \longleftrightarrow color-suppressed $\Lambda_b^0 \to \Sigma_c^{(*)} \overline{D}^{(*)} K^-$ are often used in previous models

Setup

$$P_c(4440) \text{ of } J^P = 1/2^{\pm}, 3/2^{\pm} \text{ are examined}$$

4 fitting parameters :
$$m_{P_c}$$
 , Γ_{P_c} , $c_{P_c\,\overline{K},\Lambda_b} \times c_{\psi p,P_c}^{J^P}$

One direct-decay amplitude in each of

$$J^P = 1/2^{\pm}, 3/2^{\pm}$$
 partial waves

$$J^P$$
: spin-parity of $J/\psi p$ pair

4 fitting parameters :
$$c_{J/\psi \ p \ \overline{K}, \Lambda_b}^{J^P}$$
 (real) for each J^P

$Y_c \overline{D}^{(*)}$ final state interactions $Y_c = \Lambda_c^{(*,**)}, \Sigma_c^{(*)}$

$$Y_c = \Lambda_c^{(*,**)}, \Sigma_c^{(*)}$$

Our model:

- $Y_c \overline{D}^{(*)}$ single-channel scattering (elastic unitarity)
- other possible coupled-channel effect
 - → absorbed by couplings fitted to data
- Examine if fit favors attraction or repulsion for each channel of $Y_c \overline{D}^{(*)}(I^P)$

Attraction : $\Sigma_c \overline{D}(1/2^-)$, $\Sigma_c^* \overline{D}(3/2^-)$, $\Sigma_c \overline{D}^*(1/2^-)$, $\Sigma_c \overline{D}^*(3/2^-)$, $\Lambda_c(2593) \overline{D}(1/2^+)$, $\Lambda_c(2625) \overline{D}(3/2^+)$

All interaction strengths are fixed so that $a \approx 0.5$ fm; $p \cot \delta \sim 1/a + \mathcal{O}(p^2)$

Repulsion : $\Lambda_c \overline{D}^* (1/2^-)$, $\Sigma_c^* \overline{D}^* (1/2^-)$, $\Sigma_c^* \overline{D}^* (3/2^-)$ \leftarrow common interaction strength is used

 $\Lambda_c \overline{D}^*$ (1/2⁻) interaction strength is fitted to LHCb data $\rightarrow a = -0.4 \sim -0.05$ fm for $\Lambda = 0.8 \sim 2$ GeV

 $(\Lambda: cutoff in form factors)$

Note: Pc-like peak positions are NOT sensitive to α values

Weighted candidates/(2 MeV)

Comparison with LHCb data

- Pc(4312), Pc(4380), Pc(4457) peaks are well described by kinematical effects; not by poles
- $\Lambda_c \overline{D}^*$ and $\Lambda_c (2625) \overline{D}$ threshold cusps fit the data
- Pc(4440) requires a resonance pole ($J^P = 3/2^-$ in figure)
- Similar fit quality when changing cutoff over 0.8-2 GeV and changing $J^P=1/2^\pm,3/2^\pm$ for Pc(4440)

: full model (smeared by exp. resolution)

Pc(4440)

Mass (MeV) Width (MeV)

This work 4443.1 ± 1.4

 2.7 ± 2.4

LHCb $4440.3 \pm 1.3^{+4.1}_{-4.7}$

 $20.6 \pm 4.9^{+8.7}_{-10.1}$

Pc(4440) contribution

$$\mathcal{R}_{\text{LHCb}} \equiv \frac{\mathcal{B}\left(\Lambda_b^0 \to P_c^+ K^-\right) \mathcal{B}(P_c^+ \to J/\psi \, p)}{\mathcal{B}(\Lambda_b^0 \to J/\psi \, p \, K^-)} = 1.11 \pm 0.33^{+0.22}_{-0.10} \%$$

$$\approx \underline{22} \times \mathcal{R}_{\text{This work}}$$

Pc(4440) from this work has significantly narrower width and weaker coupling strength than LHCb analysis

 \leftarrow Different strategies to fit large structure at ~ 4450 MeV

LHCb: fit with incoherent Pc(4440) and Pc(4457)

This work: mostly kinematical effect, Pc(4440) is small spike

P_c signal in $\Lambda_b^0 \to J/\psi p \pi^-$ data

LHCb data

- $M_{I/\psi p}$ bin for Pc(4440) is enhanced
- No enhancement for other Pc's bins

This observation is consistent with our model because:

- $\Lambda_b^0 \to J/\psi \ p \ \pi^-$ cannot have DTS of $\Lambda_b^0 \to J/\psi \ p \ K^ \to$ no Pc(4312), Pc(4380), Pc(4457) in $\Lambda_b^0 \to J/\psi \ p \ \pi^-$
- $\Lambda_b^0 \to J/\psi \ p \ \pi^-$ can have $\Lambda_b^0 \to P_c(4440) \ \pi^-$ mechanism \to Pc(4440) signal is possible in $\Lambda_b^0 \to J/\psi \ p \ \pi^-$

However, this data may conflict with some other Pc models

Pc signals in $\Lambda_b^0 \to J/\psi \ p \ \pi^-$ are inconclusive due to limited statistics \to Higher statistics $\Lambda_b^0 \to J/\psi \ p \ \pi^-$ data can seriously test Pc models!

Summary

Summary

- LHCb data of $\Lambda_b^0 \to J/\psi \ p \ K^-$ with Pc structures is analyzed
- Pc(4312), Pc(4380), and Pc(4457) peaks are well described by double triangle cusps and their interference with common mechanisms
- Only Pc(4440) is interpreted as a resonance
 Its width and coupling strength are significantly smaller than the LHCb analysis
- The proposed interpretation of Pc structures in $\Lambda_b^0 \to J/\psi \ p \ K^-$ is completely different from hadron molecule and compact pentaquark models
- In future, understand other resonance-like structures near thresholds with DTS
 DTS should now be a possible option