

THE OHIO STATE UNIVERSITY

Triangle singularities in production of X(3872)

Liping He [he.1011@buckeyemail.osu.edu]

The Ohio State University

in collaboration with Eric Braaten, Kevin Ingles (Ohio State U.), and Jun Jiang (Shandong U.)

- Brief review of X(3872)
- Charm-meson triangle singularity
- Production of X(3872):

 - ✦ B meson decays [PRD100, 074028(2019)]
 - hadron colliders [PRD100, 094006(2019)]

Summary

- Triangle singularity produces peaks in reaction rates

Outline

← e⁺e⁻ annihilation [PRD100, 031501(2019), PRD101, 014021(2020), PRD 101, 096020(2020)]

The observation of the peaks would definitely resolve the nature of X(3872)

Brief review of X(3872) (= $\chi_{c1}(3872)$)

 $B^+ \to K^+ + X \qquad X \to J/\psi \pi^+ \pi^-$

- discovery at e⁺e⁻ collider [Belle (2003)]: Ø
- confirmation at pp collider [CDF (2003)]: Ø

 $p\bar{p} \to X + anything$

quantum numbers [LHCb (2013)]: $J^{PC} = 1^{++}$

mass [LHCb (2020)]:

 $E_X = M_X - (M_{D^{*0}} + M_{D^0}) = (-0.07 \pm 0.12) \text{ MeV}$ $|E_X| < 0.22 \text{ MeV}$ at 90% CL

- first measurement of width (Breit-Wigner) [LHCb (2020) average]: $\Gamma_{\rm X} = (1.19 \pm 0.19) \, {\rm MeV}$
- 7 observed decay modes: J/ $\psi \pi^+\pi^-$, J/ $\psi \pi^+\pi^-\pi^0$, J/ $\psi \gamma$, $\psi(2S)\gamma$, D⁰D⁰ π^0 , D⁰D⁰ γ , $\chi_{c1}\pi^0$

Brief review of X(3872) (= $\chi_{c1}(3872)$)

other components of wave functions have small probabilities:

S-wave loosely bound charm-meson molecule!!

$$X = \frac{1}{\sqrt{2}} \left(D^{*0} \bar{D}^0 + D^0 \bar{D}^{*0} \right)$$

- at long distances: D⁰D⁰π⁰
- at short distances:
 - + $\chi_{c1}(2P)$?
 - + charged charm mesons?
 - + compact tetraquark [cq][cq]?

Brief review of X(3872) (= $\chi_{c1}(3872)$)

Universal properties determined by the binding energy |Ex|

* large scattering length: $|\mathbf{a}| = \pm 1/\sqrt{2\mu} |E_X|$, $|\mathbf{a}| >>$ range * large mean separation: $\langle \mathbf{r} \rangle = a/2$, $|E_x| < 0.22$ MeV implies $\langle \mathbf{r} \rangle > 5$ fm ***** scattering amplitude at $E \ll 1/(2\mu \operatorname{range}^2)$: $f(E) = 1/(-1/a + i\sqrt{2\mu E})$ * wavefunction: $\psi(\mathbf{r}) = \frac{e^{-r/a}}{r}$

S-wave loosely bound charm-meson molecule!!

$$X = \frac{1}{\sqrt{2}} \left(D^{*0} \bar{D}^0 + D^0 \bar{D}^{*0} \right)$$

Galilean-invariant XEFT

Braaten [PRD 91, 114007(2015)] Braaten, He & Jiang [PRD 103, 036014(2021)]

three charm mesons can be on shell simultaneously

BUT

loop amplitude near singularity:

$$F(W) \propto \log \frac{\sqrt{M_*W} + (M)}{\sqrt{M_*W} - (M)}$$

 $(M_* = M_{D^*})$

divergence at energy W above D*D* threshold:

* Xy:
$$(M_{D^{*0}}/M_X^2)(M_{D^{*0}} - M_{D^0})^2 = 2.7 \text{ MeV}$$

* $X\pi^{0}: (m_{\pi^{0}}/2M_{D^{0}})(M_{D^{*0}}-M_{D^{0}}-m_{\pi^{0}})=0.3$ MeV

* $X\pi^{\pm}: (m_{\pi^0}/2M_{D^0})(M_{D^{*+}} - M_{D^0} - m_{\pi^+}) = 0.2 \text{ MeV}$

* nonzero decay width for D* * nonzero binding energy (-Ex) for X

narrow peak in reaction rate

production of X(3872) + γ in e^+e^- annihilation

Experimental observation:

BESIII: $e^+e^- \rightarrow X\gamma$, $X \rightarrow J/\psi \pi^+\pi^-$, $J/\psi \omega$ [PRL122,232002 (2019)]

First theoretical calculation:

Dubynskiy & Voloshin [PRD 74, 094017 (2006)]

absorptive contribution only:

 $e^+e^- \rightarrow D^{*0}\overline{D}^{*0}$ (P-wave) $\rightarrow X\gamma$

e⁺e⁻ annihilation creates D^{*0}D^{*0}(P-wave)
rescattering of real D^{*0} D^{*0} into Xγ

- Line shape of Xγ has narrow peak a few MeV above D^{*0}D̄^{*0} threshold
- $\sigma[X\gamma]$: of order 1pb near the peak

production of X(3872) + γ in e^+e^- annihilation

Braaten, He & Ingles [PRD 100, 031501(2019), PRD 101, 014021(2020)]

 $e^+e^- \rightarrow D^{*0}\overline{D}^{*0}$ (P-wave) $\rightarrow X\gamma$

- e⁺e⁻ annihilation creates D^{*0}D^{*0}(P-wave)
- rescattering of virtual D^{*0} D
 ^{*0} into Xγ
- * improvements over Dubynskiy & Voloshin:
 - * include Re[M] as well as Im[M]
 - * include decay width of D*0
 - * normalize cross section using σ[D*+D*-] Uglov *et al.* (JETP Lett. 105,1 (2017)
- * cross section:
 - triangle singularity gives narrow peak at 2.2 MeV above D*⁰D^{*0} threshold at 4013.7 MeV
 - * position of peak insensitive to binding energy
 - * may be observable by **BESIII detector!**

absorptive contribution only is not a good approximation!

production of X(3872) + γ in e^+e^- annihilation

• Guo [PRL 112, 202002 (2019)]

- creation of D^{*0}D^{*0}(S-wave) at short distance
- rescattering of virtual **D**^{*0}**D**^{*0} into Xy

Line shape in X_{γ} :

- * peak a few MeV above D*0D*0 threshold
- * can be used to measure Ex

Sakai, Jing & Guo [PRD 102, 114041(2020)]

 $e^+e^- \rightarrow Zc(4020) \pi^0$, $Zc(4020) \rightarrow D^{*0}D^{*0}(S-wave) \rightarrow X\gamma$

• **BESIII** [arXiv:2101.00644]: no significant signal $e^+e^- \rightarrow Zc(4020) \pi^0$, $Zc(4020) \rightarrow D^{*0}\overline{D}^{*0}(S-wave) \rightarrow X\gamma$

production of $D^{*0}\bar{D}^0 + \gamma$ in e^+e^- annihilation

production of X(3872) + π from B meson decay

triangle singularity produces narrow peaks in dBr[B \rightarrow K X π]

- * $X\pi^{\pm}$: near 6.1 MeV above $X\pi^{\pm}$ threshold
- * $X\pi^0$: near 7.3 MeV above $X\pi^0$ threshold

production of X(3872) + π from B meson decay

branching fractions for $X\pi^{\pm}$ from the peak: integrated over

 $E_{X_{\pi}} \leq 2\delta_1 = 11.8 \text{ MeV}, \ \delta_1 = M_{D^{*+}} - M_{D^0} - m_{\pi^+}$

$$\frac{d\Gamma}{d^3q}[B^+ \to K^0 X \pi^+] = \frac{d\Gamma}{d^3q}[B^0 \to K^+ X \pi^-]$$

Br $[B^0 \to K^+ (X \pi^-)_{\triangle}] \approx (2.4 \times 10^{-7}) \left(\frac{|E_X|}{0.17 \text{ Me}}\right)$
 $|E_X| = 0.17 \text{ MeV}$ could contribute 6×10^{-7}

production of X(3872) + π from B meson decay

Sakai, Oset & Guo [PRD 101, 054030(2020)]

$B^- \rightarrow K^- D^{*0} \overline{D}^{*0} \rightarrow K^- X \pi^0$

Ex (= $-\delta x$) may be extracted from the asymmetry of the $X\pi$ line shape

• Nakamura [PRD 102, 074004(2020)]

$B^0 \rightarrow K^+ D^{*0}D^{*-} \rightarrow K^+ (J/\psi \rho \pi^-)$

triangle singularity could produce narrow peak in J/ $\psi\rho$ invariant mass near 3872 MeV even without X(3872) resonance

prompt production of X(3872) + π at Hadron colliders

Braaten, He & Ingles [PRD 100, 094006(2019)]

 $D^{*+}\overline{D}^{*0} \rightarrow X(3872)\pi^{+}$ from prompt production

- * creation of $D^{*+}\overline{D}^{*0}$ at short distance
- * rescattering of virtual $D^{*+}\overline{D}^{*0}$ into $X\pi^+$

estimated ratio of cross sections:

$$\frac{\sigma \left[(X\pi^+)_{\triangle} \right]}{\sigma [X]} \approx 0.028 \left(\frac{m_{\pi}}{\Lambda} \right)^2 \left[2.64 - \log \frac{|E_X|}{0.17 \text{ MeV}} \right]$$

Experimental observation of X(3872) + π^{\pm} in $p\bar{p}$ collisions

D0 Collaboration [PRD 102, 072005 (2020)]		
prompt and b-hadron decay production of		X(3
$T(X\pi) < 11.8 \text{ MeV}$	observed events	Хч
prompt production:	18 ± 16	
b-decay:	27 ± 12	

conclusions:

- * prompt production: no evidence for an enhancement as expected from the triangle singularity
- * b-decay: no "significant" evidence for an enhancement as expected from the triangle singularity

a small excess in small $T(X\pi)$ region, significance of 2σ

3872) + soft π^{\pm}

+ random π

Production of X+ γ or X+ π

charm meson triangle singularity produces narrow peaks just above D*D* threshold

■ e⁺e⁻ annihilation

B meson decay

Hadron colliders

The observation of the peaks would definitely resolve the nature of X(3872)

Summary

 $\diamond \sigma[X\gamma]$: narrow peak at 4015.9 MeV ♦ peak is in region not yet measured by BESIII

 \diamond dBr[X π^0]/dE_{X π}: peak near 7.3 MeV above X π^0 threshold \diamond dBr[X π^{\pm}]/dE_{X π^{\pm}}: peak near 6.1 MeV above X π^{+} threshold ♦ could be observed by Belle II or LHCb

 $\diamond d\sigma [X\pi^{\pm}]/dE_{X\pi}$: peak near 6.1 MeV above $X\pi^{+}$ threshold \diamond hint of peak at $p\bar{p}$ collider by D0 ♦ could be observed at pp collider by LHCb, CMS, ATLAS

B meson decay Br[*I* $\frac{d\Gamma}{d^3q}[B^+ \to K^+ X \pi^0] = \frac{|\mathcal{A}[K^+ X \pi^0]|^2}{4|\mathcal{A}[K^0 X \pi^0]|^2} \frac{d\Gamma}{d^3q}[B^0 \to K^0 X \pi^0],$ (36a)

$$\frac{d\Gamma}{d^3q}[B^+ \to K^0 X \pi^+] = \frac{d\Gamma}{d^3q}[B^0 \to K^+ X \pi^-]. \qquad (36b) \qquad Br[B^0 \to K^+ X \pi^-]Br[X \to J \psi \pi^+ \pi^-] = (7.9 \pm 1.3 \pm 0.4) \times 10^{-6}$$

Hadron collider

$$d\sigma[D^{*0}\bar{D}^{*0}] \approx d\sigma[X(3872)] \frac{12\pi\mu}{\gamma_X \Lambda^2} \frac{d^3k}{(2\pi)^3 M_{*0}}$$

$$\frac{\sigma[(X\pi^0)_{\Delta}]}{\sigma[X]} \approx 0.049 \left(\frac{m_{\pi}}{\Lambda}\right)^2 \left[2.82 - \log\frac{|E_X|}{0.17 \text{ MeV}}\right],$$

$$\frac{\sigma[(X\pi^+)_{\Delta}]}{\sigma[X]} \approx 0.028 \left(\frac{m_{\pi}}{\Lambda}\right)^2 \left[2.64 - \log\frac{|E_X|}{0.17 \,\mathrm{MeV}}\right].$$

Br[B]

Backup

$$B^0 \to K^+(X\pi^-)_{\triangle}] \approx (2.4 \times 10^{-7}) \left(\frac{|E_X|}{0.17 \text{ MeV}}\right)^{1/2} \times \left[2.64 - \log \frac{|E_X|}{0.17 \text{ MeV}}\right].$$

$$B^0 \to K^0(X\pi^0)_{\triangle}] < (8 \times 10^{-8}) \left(\frac{|E_X|}{0.17 \text{ MeV}}\right)^{1/2} \times \left[2.82 - \log \frac{|E_X|}{0.17 \text{ MeV}}\right].$$

- + prompt production by QCD mechanisms:
- decay products emerge from primary collision vertex + production by b hadron decay:
 - decay products emerge from displaced secondary vertex

