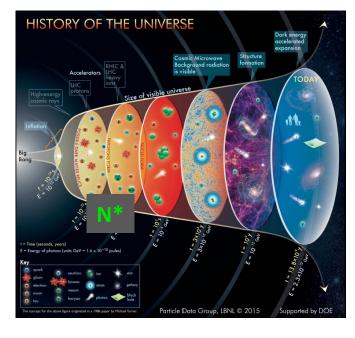
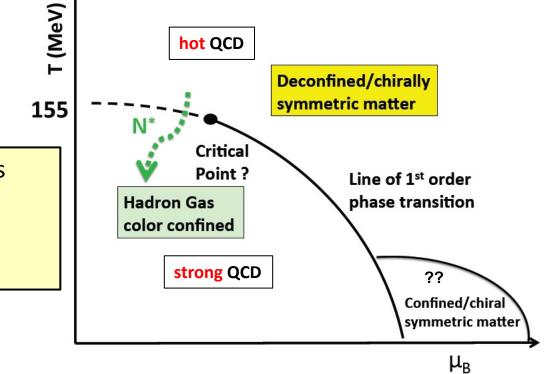

New Baryon States in Exclusive Meson Photo-/Electroproduction with CLAS

V.I. Mokeev Jefferson Laboratory

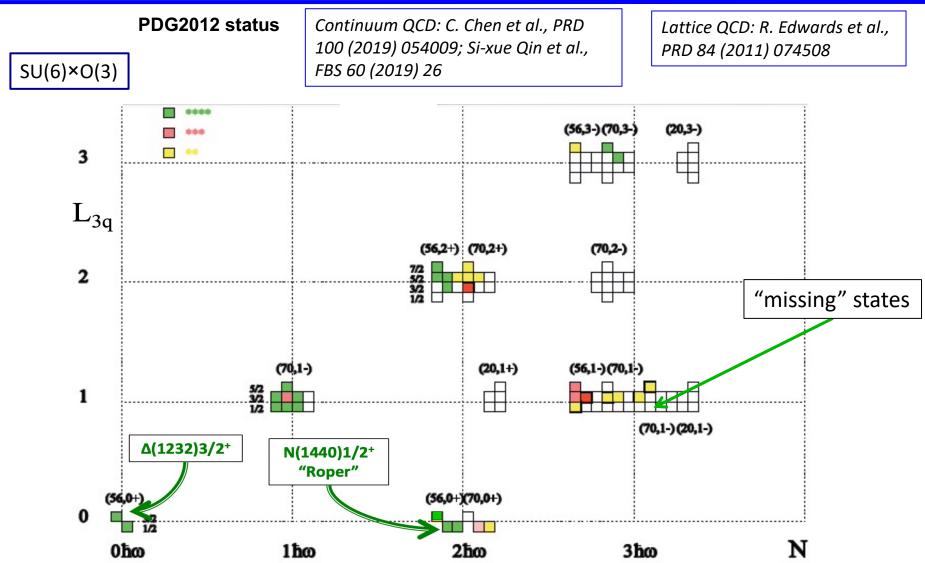


Talk outline:


- Hadron spectra and emergence of the strong QCD regime
- N* spectrum from photoproduction data
- New N'(1720)3/2⁺ state from analysis of π⁺π⁻p photo-/electroproduction data
- Validating new baryon state existence
- Insight into ``missing" resonance structure

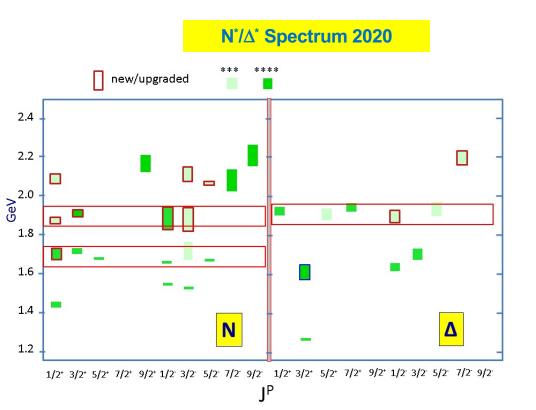
19th International Conference on Hadron Spectroscopy and Structure in memoriam Simon Eidelman online via ZOOM

Dramatic events occurred in the micro-second old universe during the transition from the deconfined quark and gluon phase to the hadron phase.


Quark-gluon confinement emerges

- Chiral symmetry of QCD is broken
- Quarks and gluons acquire mass
- Baryon resonances form

This transition was shaped by the full meson and baryon spectra



SU(6)xO(3) Spin-Flavor Symmetry and ``Missing" Resonances

Studies of the N*-spectrum were driven by a guess for the ``missing" baryon states expected from underlying SU(6)xO(3) symmetry and supported by continuum lattice QCD results on the N*-spectrum

Several new nucleon resonances were established in a global multi-channel analysis of exclusive photoproduction data

Nucleon resonances listed in Particle Data Group (PDG) tables

State N(mass)J ^p	PDG pre 2012	PDG 2020*
N(1710)1/2⁺	***	****
N(1880)1/2+		***
N(1895)1/2 ⁻		****
N(1900)3/2⁺	**	****
N(1875)3/2 ⁻		***
N(2100)1/2+	*	***
N(2120)3/2 ⁻		***
N(2000)5/2+	*	**
N(2060)5/2 ⁻		***
∆(1600)3/2 ⁺	***	****
∆ (1900)1/2 ⁻	**	***
Δ(2200)7/2-	*	***

Description of the exclusive electroproduction data off the proton with the same masses and hadronic decay widths as in photoproduction will validate the existence of new baryon states.

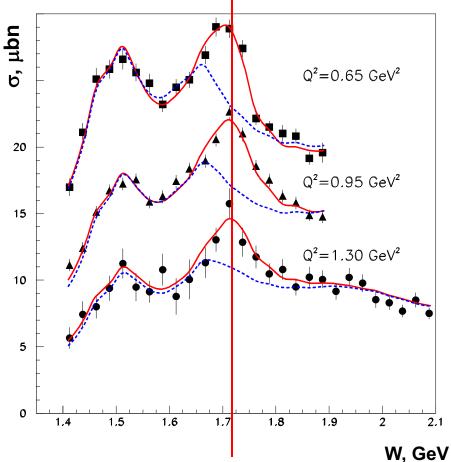
Combined studies of the CLAS $\pi^*\pi^-p$ photo-/electroproduction off proton data allow us to observe a new N'(1720)3/2⁺ baryon state in addition to those listed above.

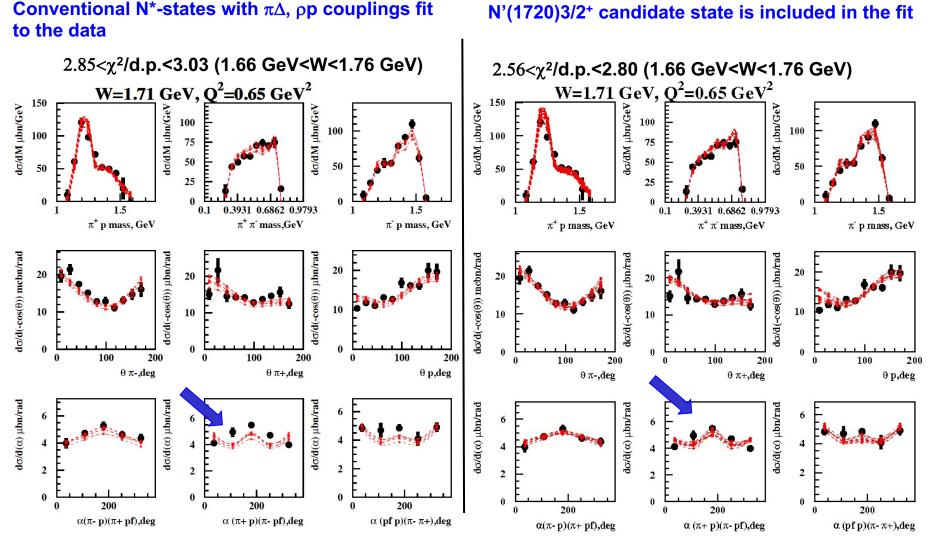
Interpretation of the Structure at W~1.7 GeV in $\pi^+\pi^-p$ Electroproduction

M. Ripani et al., CLAS Collaboration Phys. Rev. Lett. 91, 022002 (2003)

conventional states only, consistent with PDG 02

Two equally successful ways for the data description:decNo new states, different than in PDG 02' $N(1720)3/2^+ N\pi\pi$ hadronic decay widths:

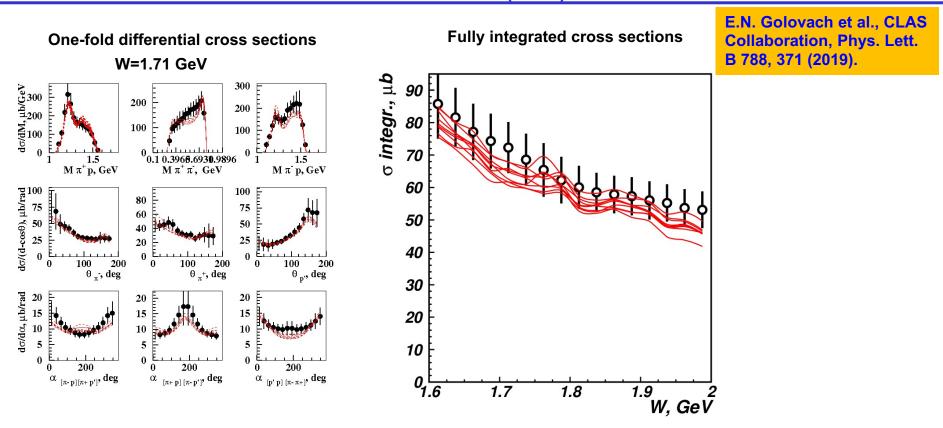

· · ·		,		
	Γ _{tot,} MeV	BF(π∆) %	BF(ρp) %	
N(1720)3/2 ⁺ decays fit to the CLAS Nππ data	126±14	64-100	<5	
N(1720)3/2 ⁺ PDG 02'	150-300	<20	70-85	


new N'(1720)3/2+ and regular N(1720)3/2+:

	$\Gamma_{tot,}MeV$	BF(π∆) %	BF(ρp) %
N'(1720)3/2⁺ New	119±6	47-64	3-10.
N(1720)3/2 ⁺ Conventional	112±8	39-55	23-49

llerson (

implementing N'(1720)3/2⁺ candidate or only conventional states with different N(1720)3/2⁺ N $\pi\pi$ decays than in PDG 02



• Fit of $\theta_{\pi-}$, $\theta_{\pi+}$, θ_p angular distributions requires essential contribution(s) from $J^{\pi}=3/2^+$ resonance(s).

ellerson Val

• Single state of $J^{\pi}=3/2^+$ should have major $\pi\Delta$ (>60%) and minor ρp (<5%) decays in order to reproduce pronounced Δ -peaks in π^+p and to avoid ρ -peak formation in the $\pi^+\pi^-$ mass distribution.

Description of the CLAS $\pi^+\pi^-p$ Photoproduction off Protons Data with/without the New State N'(1720)3/2⁺

Almost the same quality of the photoproduction data description was achieved with and without the new N'(1720)3/2⁺ state:

N(1720)3/2⁺ and N'(1720)3/2⁺ \longrightarrow 1.19 < χ^2 /d.p. < 1.28 N(1720)3/2⁺ only $1.08 < \chi^2$ /d.p. < 1.26

Would it be possible to describe photo- and electroproduction data with Q²-independent resonance masses and total and partial hadron decay widths?

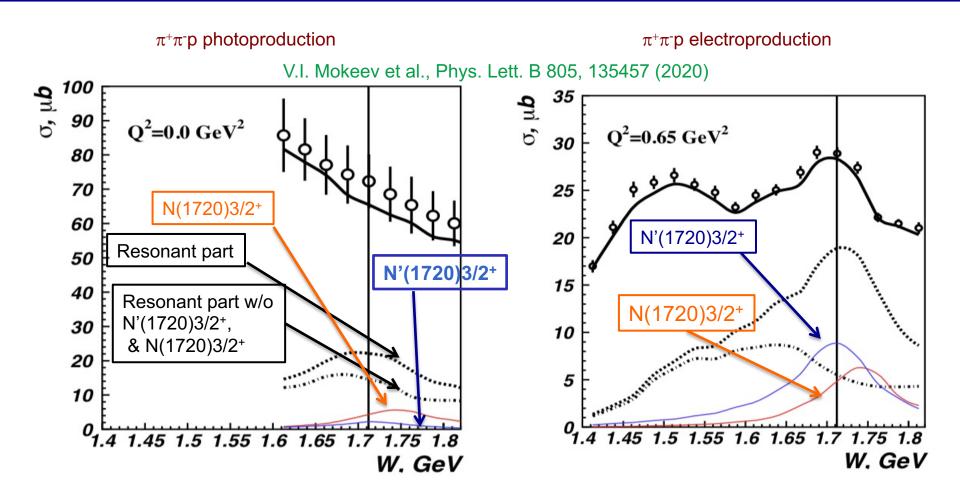
V.I. Mokeev, Hadron 2021

Evidence for the Existence of the New State N'(1720)3/2⁺ from Combined $\pi^+\pi^-p$ Analyses in both Photo- and Electroproduction

V.I. Mokeev et al., Phys. Lett. B 805, 135457 (2020)

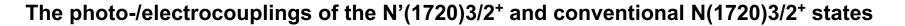
N(1720)3/2⁺ hadronic decays from the CLAS data fit with conventional resonances only

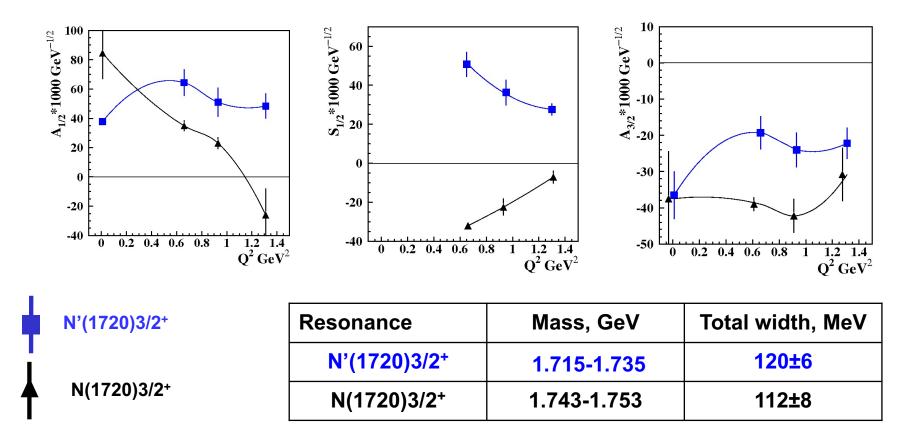
	BF(πΔ), %	BF(ρp), %
electroproduction	64-100	<5
photoproduction	14-60	19-69


The contradictory BF values for N(1720)3/2⁺ decays to the $\pi\Delta$ and ρ p final states deduced from photo- and electroproduction data make it impossible to describe the data with conventional states only. N* hadronic decays from the data fit that incorporates the new N'(1720)3/2⁺ state

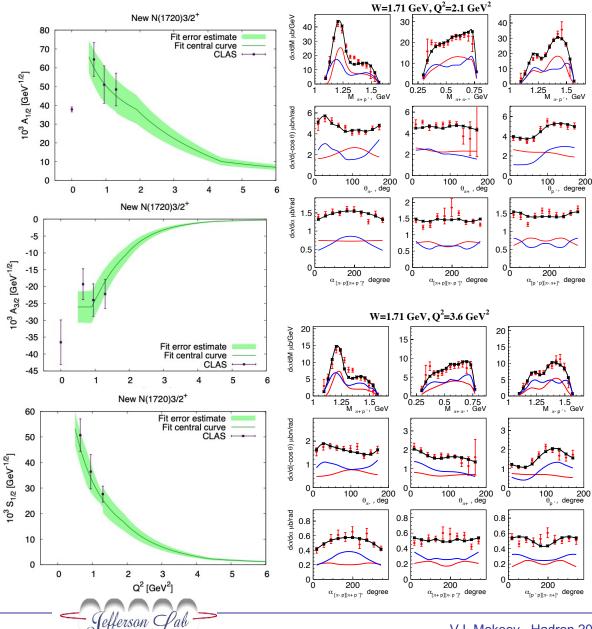
Resonance	BF(πΔ), %	BF(ρ p), %
N'(1720)3/2 ⁺ electroproduction photoproduction	47-64 46-62	3-10 4-13
N(1720)3/2 ⁺ electroproduction photoproduction	39-55 38-53	23-49 31-46
∆(1700)3/2 ⁻ electroproduction photoproduction	77-95 78-93	3-5 3-6

The successful description of the $\pi^+\pi^-p$ photoand electroproduction data achieved by implementing new N'(1720)3/2⁺ state with Q²-independent hadronic decay widths of all resonances contributing at W~1.7 GeV provides strong evidence for the existence of the new N'(1720)3/2⁺ state.




Newly Discovered N'(1720) 3/2+

> Evidence of a new N'(1720) 3/2⁺ resonance in the photo- and electroproduction of the $\pi^+\pi^-p$ channel



• N'(1720)3/2⁺ is the only new resonance for which data on electroexcitation amplitudes have become available.

• Gaining insight into the ``missing" resonance structure will shed light on their peculiar structural features that have made them so elusive, as well as on the emergence of new resonances from QCD.

Description of the π⁺π⁻p Differential Cross Sections at 2.0 GeV² < Q² < 5.0 GeV² with the Contribution from N'(1720)3/2⁺

- Nine 1-fold differential π⁺π⁻p cross sections have been successfully described for Q² from 2 5 GeV² with Q²-independent mass, πΔ and ρp decay widths of N'(1720)3/2⁺, solidifying evidence for existence of this new resonance.
- Extraction of N'(1720)3/2⁺ electrocouplings is in progress.

FullResonancesBackground

New resonances discovered from exclusive meson photoproduction data revealed the following pattern of the high-lying resonance spectrum under approximate SU(6)xO(3) symmetry

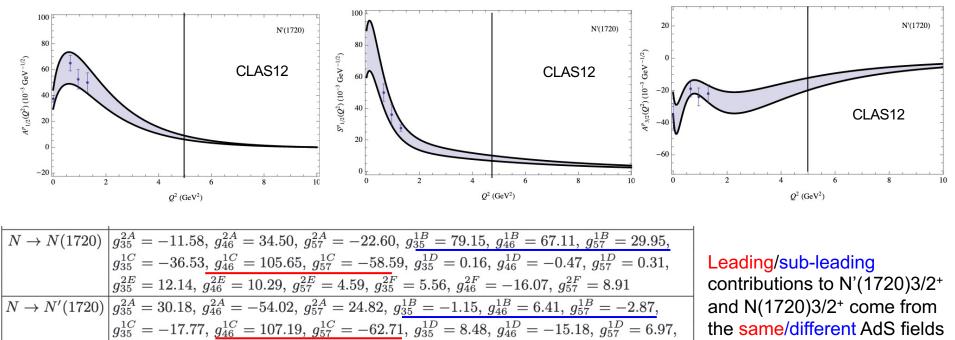
[70,2⁺] multiplet

$$\begin{split} S_q = 3/2 & N(1880)1/2^+ \ N(1900)3/2^+ \ N(2000)5/2^+ \ N(2000)7/2^+ \\ & M_{avg} \left(S_q = 3/2 \right) = 1.96 \ \text{GeV} \qquad \Delta M(S_q = 3/2) = 0.075 \ \text{GeV} \\ & S_q = 1/2 & N'(1720)3/2^+ \ N(1860)5/2^+ \end{split}$$

 $\Delta M(S_q=3/2-S_q=1/2)[70,2^+] = \Delta M(S_q=3/2-S_q=1/2)[70,1^-] = 0.16 \text{ GeV}$

 $M_{avg}(S_q=1/2) = M_{avg}(S_q=3/2) - \Delta M(S_q=3/2-S_q=1/2)[70,2^+] = 1.96-0.16 = 1.80 \text{ GeV}$ $M(N'(1720)3/2^+) = M_{avg}(S_q=1/2) - \Delta M(S_q=3/2) = 1.80-0.075 = 1.73 \text{ GeV}$ consistent with the mass of N'(1720)3/2⁺ inferred from the $\pi^+\pi^-p$ photo-/electroproduction data

<u>N'(1720)3/2⁺</u>: three constituent quarks of total spin $S_q=1/2$ and orbital momentum L=2 in [70,2⁺] multiplet, double orbital excitation


 $N(1720)3/2^{+2}$ three constituent quarks of total spin S_q=1/2 and orbital momentum L=2 in [56,2⁺] multiplet

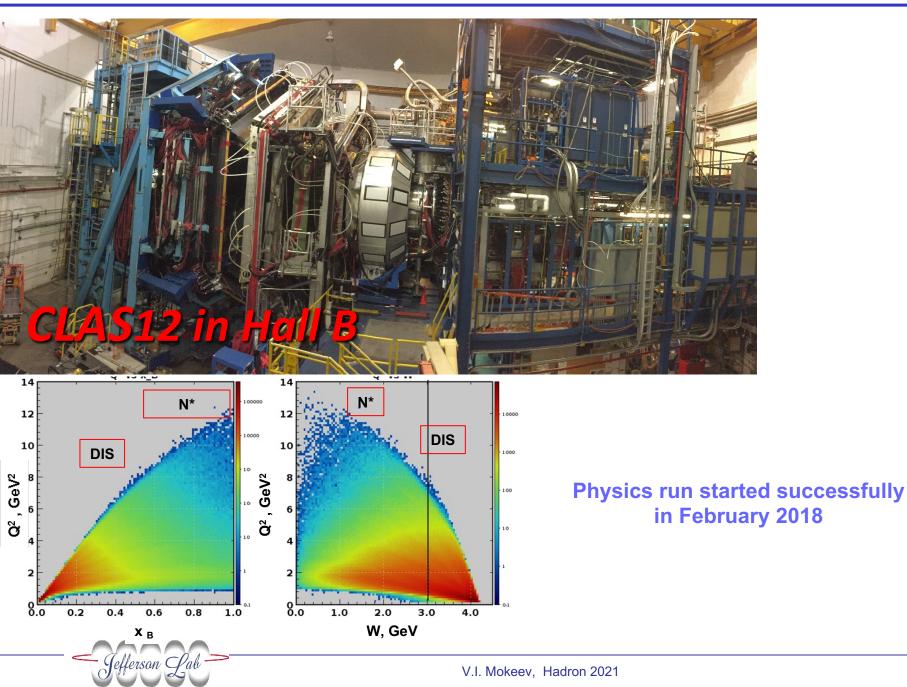
Quark model evaluation of $\gamma_v pN^*$ electrocouplings under the aforementioned assignments for N(1720)3/2⁺ and N'(1720)3/2⁺ states will shed light on peculiar features in N'(1720)3/2⁺ structure

Soft-wall Ads/CFT, V.E. Lyubovitskij and I. Schmidt, e-Print:2009.07115 [hep--ph]

 $g_{35}^{2E} = -0.60, \ g_{46}^{2E} = 3.37, \ g_{57}^{2E} = -1.51, \ g_{35}^{2F} = -3.57, \ g_{46}^{2F} = 21.56, \ g_{57}^{2F} = -12.61$

- Checking [70,2⁺] and [56,2⁺] assignments for N'(1720)3/2⁺ and N(1720)3/2⁺, respectively (R. Bijker et al., PRD 94, 074040 (2016), G. Ramalho, FBS 59, 92 (2018)) from the results on γ_vpN* electrocouplings. If confirmed, discovery of N'(1720)3/2⁺ represents the first observation of the resonance with two non-zero orbital momenta I_λ and I_ρ in three quark system.
- Alternative assignment of N'(1720)3/2⁺ as a member of 27-SU(3) baryon multiplet of chiral soliton model (G.-S. Yang and H.-C. Kim, PTEP, 093D01 (2019))

Conclusions and Outlook


- Several long-time awaited new, so-called ``missing" nucleon resonances, have been discovered from global analyses of exclusive meson photo- and hadroproduction data with decisive impact from KY photoproduction channels measured with CLAS.
- New N'(1720)3/2⁺ resonance has been observed in combined studies of $\pi^+\pi^-p$ photoand electroproduction data. A successful description of $\pi^+\pi^-p$ electroproduction data at 2.0<Q²<5.0 GeV² achieved accounting for contribution from N'(1720)3/2⁺ with Q²independent masses and decay widths into $\pi\Delta$ and ρp final states supports the new resonance existence.
- New N'(1720)3/2⁺ state is the only ``missing" resonance for which the results on Q²evolution of $\gamma_v pN^*$ electrocouplings have become available. In the future, the information on the N'(1720)3/2⁺ electrocouplings from the CLAS data will be extended towards Q² up to 5.0 GeV².
- Analyses of the results on the new resonance electrocouplings in collaborative efforts with hadron structure theory will shed light on particular features of the ``missing" resonance structure which have made them so elusive for detection.
- Experiments with CLAS12 detector are expected to provide the ultimate information on the spectrum of excited nucleon states, including exotic hybrid baryons, and shed light on approximate symmetries of the strong interaction relevant for the generation of the N*-spectrum.

Back Up

12 GeV Era with the CLAS12 Detector

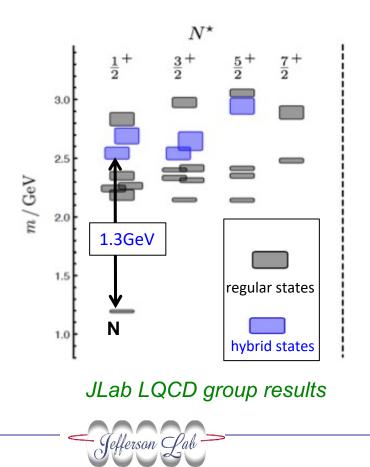
Hybrid Baryons E12-16-010	Search for hybrid baryons (qqqg) focusing on 0.05 GeV ² < Q ² < 2.0 GeV ² in mass range from 1.8 to 3 GeV in KA, N $\pi\pi$, N π (A. D'Angelo, et al.)
KY Electroproduction E12-16-010A	Study N* structure for states that couple to KY through measurements of cross sections and polarization observables that will yield Q ² evolution of electrocoupling amplitudes at Q^2 <7.0 GeV ² (<i>D. Carman, et al.</i>)

Approved by PAC44

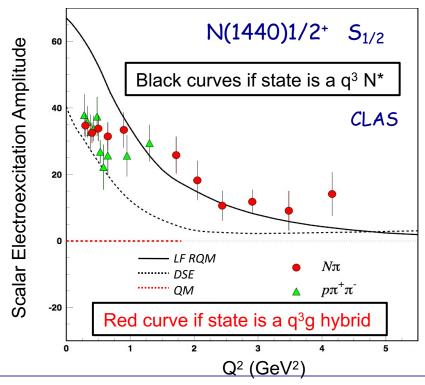
Run Group conditions:

 $E_b = 6.6 \text{ GeV}, 50 \text{ days}$

 $E_b = 8.8 \text{ GeV}, 50 \text{ days}$

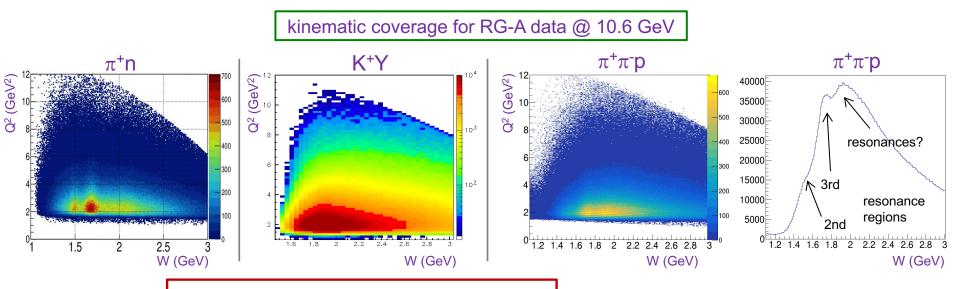

- •Polarized electrons, unpolarized LH₂ target
- L = 1x10³⁵ cm⁻²s⁻¹

Hunting for Glue in Excited Baryons with CLAS12


Can glue be a structural component to generate hybrid q³g baryon states?

Predictions of the N* spectrum from QCD show both regular $q^3 and$ hybrid q^3g states

Search for hybrid baryons with CLAS12 in exclusive KY and $\pi^+\pi^-p$ electroproduction


LQCD and/or QM predictions on Q² evolution of the hybrid-baryon electroexcitation amplitudes are critical in order to establish the nature of a baryon state

V.I. Mokeev, Hadron 2021

N* Electroexcitation to High Q² with CLAS12

Expected outcome: The first results on the $\gamma_v pN^*$ electrocouplings of most N* states from data in the range W < 3.0 GeV and Q² > 5.0 GeV² for exclusive reaction channels: πN , $\pi \pi N$, KY, KY*

Expected events per Q²/W bin for full RG-A dataset

π ⁺ n			Κ ⁺ Λ & Κ ⁺ Σ ⁰				π ⁺ π ⁻ p			
Q² [GeV²]	W [GeV] 1.5-1.55	W [GeV] 1.7-1.75	Q² [GeV²]	W _∧ [GeV] 1.7-1.75	W _Σ [GeV] 1.7-1.75	W _^ [GeV] 1.9-1.95	W _Σ [GeV] 1.9-1.95	Q² [GeV²]	W [GeV] 1.7-1.75	W [GeV] 1.9-1.95
			1.4-2.2	63417	6012	66564	33170			
			2.2-3.0	72144	5364	77443	28720			
5.2-5.8	15272	4175	3.0-4.0	52358	3945	51991	18936	5.2-5.8	2813	2808
5.8-6.5	10737	2637	4.0-5.0	24833	3103	26690	5925	5.8-6.5	1822	1969
6.5-7.2	7367	1684	5.0-6.0	11203	1598	11160	2642	6.5-7.2	1159	1294
7.2-8.1	4567	1290	6.0-7.0	5566	648	6300	943	7.2-8.1	661	924
8.1-9.1	2742	540	7.0-8.0	2606	338	3276	633	8.1-9.1	364	414
9.1-10.5	1453	194	8.0-9.0	1440	244	936	86	9.1-10.5	118	179

lefferson Pab

Collected data will extend the Q^2 range of the $\gamma_v pN^*$ electrocouplings to 8-10 GeV² for each of these channels

V.I. Mokeev, Hadron 2021