SINGLE PION ELECTROPRODUCTION Phys.Rev.C 103 (2021) 6

Maxim Mai, M. Döring, C. Granados, H. Haberzettl, Ulf-G. Meißner, D. Rönchen, I. Strakovsky, R. Workman

[Jülich-Bonn-Washington (JBW) collaboration]

slides

https://maxim-mai.github.io/talks/HADRON21-MM.pdf

MOTIVATION

UNIVERSAL PARAMETERS OF RESONANCES

QCD SPECTRUM

- Rich spectrum of excited states (talk by V. Mokeev)
- 2/3quarks, hadron molecules, glueballs, ...

- Universal parameters:

Complex-valued pole positions and residua on the Riemann Surface

(QM)Loring et al. (2001) Eichmann et al. (2016)

(LQCD) Edwards et al. (2011)

Input at real energies:

- (Experiment + Partial wave analysis)

Jülich-Bonn, Bonn-Gatchina, SAID, ...

- (Lattice QCD + Quantization conditions)

<u>Reviews</u>: e.g. Briceno et al. (2017), Mai et al. (2021) <u>Talk by F. Romero-López: 29/7/2021 14:00</u>

BRAND NEW: a1(1260) from lattice QCD

Talk by A. Alexandru Meson-5: 28/7/2021 11:40

QCD SPECTRUM

Exciting hadrons

Pion-induced excitation ⇔ scattering experiments

- Unitarity/Analyticity/Crossing symmetry
- Underlying objects: scattering amplitudes

Photon-induced excitation ⇔ meson photo-/electroproduction

- Gauge-invariance/unitarity of the FSI Afnan et al.(1995) Kvinikhidze et al.(1999) Haberzettl(19xx-2021) Borasoy et al.(2007) Ruic et al.(2011) MM et al.(2012)
- Plenty of data (10⁵ for $\gamma p \rightarrow \pi N$ alone) (12GeV) JLab, CLAS, MAMI, ELSA

- *Multipoles* encode information about resonances...

METHODOLOGY - 1

SINGLE MESON-PHOTOPRODUCTION

A boundary condition for electroproduction analysis

MESON-PHOTOPRODUCTION

Boundary condition for electroproduction

At Q²=0 (real photon): electroproduction == photoproduction \Rightarrow take already existing approach:

The Jülich-Bonn Dynamical Coupled-Channel Model: Rönchen et al., EPJA 49, 44 (2013)

APPROACH:

- Scattering equation in partial wave basis

$$\langle L'S'p'|T^{IJ}_{\mu\nu}|LSp\rangle = \langle L'S'p'|V^{IJ}_{\mu\nu}|LSp\rangle + \\ \sum_{\gamma,L''S''} \int_{0}^{\infty} dq \quad q^{2}_{/E} \langle L'S'p'|V^{IJ}_{\mu\gamma}|L''S''q\rangle \frac{1}{E - E_{\gamma}(q) + i\epsilon} \langle L''S''q|T^{IJ}_{\gamma\nu}|LSp\rangle$$

- Potential V from an effective Lagrangian
- *TP* genuine resonance states in s-channel diagrams
- TNP dynamically generated poles: t/u-channel

MESON-PHOTOPRODUCTION

Boundary condition for electroproduction

At Q²=0 (real photon): electroproduction == photoproduction \Rightarrow take already existing approach:

The Jülich-Bonn Dynamical Coupled-Channel Model: Rönchen et al., EPJA 49, 44 (2013)

PROPERTIES

- included channels:
- 2-body unitarity respected
- 3-body ($\pi\pi N$) parameterized by $\pi\Delta$, σN , ρN channels

DATABASE

- $\pi N \rightarrow X$: ~7k data ($\pi N \rightarrow \pi N$ GW-SAID WI08)
- $\gamma N \rightarrow X$: ~60k data

METHODOLOGY - 2

EXTENSION TO PION ELECTROPRODUCTION

Existing approaches

ANL-Osaka, MAID, etaMAID, SAID, ...

ANL-Osaka PRC 80(2009), Few-Body Syst. 59(2018),... Aznauryan et al., PRC 80(2009), IJMP(2013),... EtaMAID2018, EPJA 54(2018) MAID2007, EPJA 34(2007) SAID, PiN Newsletter 16(2002) Gent group PRC 89(2014),...

Highlights:

- Simultaneous description of pion photo- and electroproduction (MAID)
- Consistent extraction of the Roper form factor from single and double pion electroproduction
 Burkert, Roberts, Rev.Mod.Phys. 91 (2019)
- New resonance in electroproduction claimed Mokeev et al., PLB (2020)

Needed: coupled-channel approach

- *universality* \Leftrightarrow simultaneous description of πN , ηN , $K\Lambda$ channels
- data: ~10⁵ data exists

many data awaits analysis

many more to emerge at e.g. JLab

Carman et al. (2020)

Data base/energy coverage

Total data: 85k (>photo-production data)

Polarized observables:

- CLAS: structure functions σ_{LT} Joo

Joo et al. (2003-4)

- JLab-Hall A: $K_{1D} = \{K_{1D}^A, K_{1D}^B, ..., K_{1D}^T\}$ Kelly et al. (2005)

Parametrization dependence due to incomplete data

- ... even for a truncated complete electroproduction experiment Tiator et al.(2017)
- ... in future: Bias-variance tradeoff with statistical criteria (Akaike, Bayesian, model selection)

Landay et al.(2017) (2019)

RESULTS

Fits and results

Six different fit strategies (assessing systematics)

- Sequential $S \rightarrow S + P \rightarrow S + P + D$ waves
- Subsets of data until full data set reached
- Simultaneous fit all parameters (209) set to zero (without any guidance!)
- Extend data range $Q^2_{max}=4~GeV^2 \rightarrow Q^2_{max}=8~GeV^2$... stability check

Best fit results:

Fit	σ_L		$d\sigma/d\Omega$		$\sigma_T + \epsilon \sigma_L$		σ_T		σ_{LT}		$\sigma_{LT'}$		σ_{TT}				P_Y		ρ_{LT}		$\rho_{LT'}$		$\chi^2_{ m dof}$
	$\pi^0 p$	$\pi^+ n$	$\pi^0 p$	$\pi^+ n$	$\pi^0 p$	$\pi^+ n$	$\pi^0 p$	$\pi^+ n$	$\pi^0 p$	$\pi^+ n$	$\pi^0 p$	$\pi^+ n$	$\pi^0 p$	$\pi^+ n$	$\pi^0 p$	$\pi^+ n$	$\pi^0 p$	$\pi^+ n$	$\pi^0 p$	$\pi^+ n$	$\pi^0 p$	$\pi^+ n$	
\mathfrak{F}_1	_	9	65355	53229	870	418	87	88	1212	133	862	762	4400	251	4493	—	234	_	525	_	3300	10294	1.77
\mathfrak{F}_2	_	4	69472	55889	1081	619	65	78	1780	150	1225	822	4274	237	4518	—	325	—	590	—	3545	10629	1.69
\mathfrak{F}_3	_	8	66981	54979	568	388	84	95	1863	181	1201	437	3934	339	4296	_	686	_	687	_	3556	9377	1.81
\mathfrak{F}_4	_	22	63113	52616	562	378	153	107	1270	146	1198	1015	4385	218	5929	_	699	_	604	_	3548	11028	1.78
\mathfrak{F}_5	_	20	65724	53340	536	528	125	81	1507	219	1075	756	4134	230	5236	_	692	_	554	_	3580	11254	1.81
\mathfrak{F}_{6}	_	18	71982	58434	1075	501	29	68	1353	135	1600	1810	3935	291	5364	_	421	_	587	_	3932	11475	1.78

... different local minima

Results (1) Kelly

Global JBW-fits vs. Kelly data

Towards complete data -- compare parametrizations

6k $\pi^0 p$ data points for fixed W=1.23 GeV, Q²=1 GeV², φ =15° Kelly et al.(2005)

Results (2) Structure functions

global JBW-fits vs. CLAS data (Q²=0.9 GeV²) Joo et al. [CLAS] PRC (2003), PRL (2002)

Results (3) Multipoles

Large multipoles well determined - small systematic uncertainties

Smaller ones have larger systematic uncertainties

INTERACTIVE WEB INTERFACE: https://jbw.phys.gwu.edu

Results (4) Roper Multipole

Non-trivial Q² behavior

Zero transition

Helicity coupling to be extracted...

SUMMARY

New (Jülich-Bonn-Washington) JBW model

- Phenomenology of excited baryons through coupled-channels, two- and three-body effects
- Pion electroproduction analysis performed:
 - Global fits to 10⁵ data $\Rightarrow \chi^2_{dof} \lesssim 2$
 - Exploration of systematical uncertainties
 - Prominent multipoles well determined

INTERACTIVE WEB INTERFACE: https://jbw.phys.gwu.edu

SUMMARY

New (Jülich-Bonn-Washington) JBW model

- Phenomenology of excited baryons through coupled-channels, two- and three-body effects
- Pion electroproduction analysis performed:
 - Global fits to 10⁵ data $\Rightarrow \chi^2_{dof} \lesssim 2$
 - Exploration of systematical uncertainties
 - Prominent multipoles well determined

INTERACTIVE WEB INTERFACE: https://jbw.phys.gwu.edu

OUTLOOK

- Extraction of helicity couplings and fixed-Q² analysis
- Upgrade to ηN and KY electroproduction (existing and future JLab data)
- Statistical upgrade: How to find a minimal resonance spectrum through model selection

Landay et al., Phys.Rev.D (2019), 1810.00075 [nucl-th]

THANK YOU

