New results on π⁰p beam asymmetry in the resonance region with CLAS

Evgeny Isupov (Moscow State U.)

Insight into the Strong QCD from the Synergy between Experiment, Phenomenology, and Theory

Basics for Insight into EHM from Data on N* Electrocouplings

Inferred from QCD Lagrangian with only the Λ_{QCD} parameter

Extraction of γ_vNN* Electrocouplings from Exclusive Meson Electroproduction off Nucleons

 Consistent results on γ_vpN* electrocouplings from different meson electroproduction channels are critical in order to validate reliable extraction of these quantities.

Single meson electroproduction in the resonance region from Hall-B

		Q ²	W	
JLab/Hall B	$rac{d\sigma}{d\Omega}(\pi^0 p,\pi^+ n)$	0.16-0.36	1.1-1.38	[8]
	$\frac{d\sigma}{d\Omega}(\pi^0 p)$	0.4-1.8	1.1-1.68	[9]
	$\frac{d\sigma}{d\Omega}(\pi^0 p)$	3.0-6.0	1.1-1.39	[10]
	$A_{LT'}(\pi^0 p)$	0.4, 0.65	1.1-1.66	[11]
	$A_t, A_{et}(\pi^0 p)$	0.252, 0.385, 0.611	1.12-1.55	[12]
	$rac{d\sigma}{d\Omega}(\pi^+n)$	0.3-0.6	1.1-1.55	[13]
	$\frac{d\sigma}{d\Omega}, A_{LT'}(\pi^+ n)$	1.7-4.5	1.11-1.69	[14]
	$A_{LT'}(\pi^+n)$	0.4, 0.65	1.1-1.66	[15]
	$rac{d\sigma}{d\Omega}(\eta p)$	0.375-1.385	1.5-1.86	[16]
	$rac{d\sigma}{d arOmega}(\eta p)$	0.17–3.1	1.5–2.3	[17]

5

Progress in Particle and Nuclear Physics 67 (2012) 1 I.G. Aznauryan, V.D. Burkert

Exclusive $\pi^0 p$ electroproduction off protons in the resonance region at photon virtualities 0.4 GeV² $\leq Q^2 \leq 1$ GeV²

2020

N. Markov,^{8, 36},^{*} K. Joo,⁸ V.D. Burkert,³⁶ V.I. Mokeev,³⁶ L. C. Smith,⁴¹ M. Ungaro,³⁶ S. Adhikari,¹¹

Same data run (E1E) 1.1 < W < 1.8 GeV Access to second and third N^{*} regions!

Data

6

- CLAS detector data 12/2002 1/2003
- Beam energy: 2.036 GeV
- Beam polarization: ~ 80%
- Target: Liquid Hydrogen, thickness 2 cm

• Number of triggers: ~ 1.5 billion

> 0.4 < Q² < 1 GeV² 1.1 < W < 1.8 GeV

Proton identification

Final event selection

Beam spin asymmetries

MAID 2007 (solid line)

7

MAID 2007 with modified electrocouplings, taken from CLAS analyses (dotted line)

Polarized Structure Function $\sigma_{LT'}$

$$\frac{d^{2}\sigma^{h}}{d\Omega_{\pi}^{*}} = \frac{p_{\pi}^{*}}{k_{\gamma}^{*}} [\sigma_{0} + h\sqrt{2\epsilon_{L}(1-\epsilon)} \sigma_{LT'} \sin \theta_{\pi}^{*} \sin \phi_{\pi}^{*}]$$
$$A_{LT'} = \frac{\sqrt{2\epsilon_{L}(1-\epsilon)} \sigma_{LT'} \sin \theta_{\pi}^{*} \sin \phi_{\pi}^{*}}{\sigma_{0}}$$

 $A_{LT'} = \frac{A_m}{P_e},$

 $A_m =$

We have unpolarized cross sections from the same data.

Extraction Of Polarized Structure Function $\sigma_{LT'}$

Binning:

28 W-bins from 1.1 to 1.8 GeV, width = 25 MeV 2 Q²-bins [0.4-0.6] and [0.6-1.0] GeV² 10 Cos(θ)-bins [-1,1] width = 0.2 12 Φ -bins [0,360] width = 30°

> W = 1.66 GeV $0.4 < Q^2 < 0.6 \text{ GeV}^2$ $\cos(\theta) = -0.9$

Polarized Structure Function σ_{1T} , 0.4 < Q² < 0.6 GeV²

Legendre Polynomials of $\sigma_{LT'}$

 $I=0,1,2,3 \quad \sigma_{LT'}=D0+D1*x+D2*0.5*(3*x^2-1)+D3*0.5*(5*x^3-3*x)$

sensitivity to P13(1720) D1 ~ -Im(... 6*S1p*conj(E1p) - 6*S1p*conj(M1p) ...)

sensitivity to D33(1700) D1 ~ -Im(... - 6*S2m*conj(E2m) -6*S2m*conj(M2m)...)

11

LP – effective way to present our data and to demonstrate sensitivity to different excited states of the nucleon

P ₁₁	P_{31}	$\frac{1}{2}^+$	1+	L_{1-}
S_{11}	S_{31}	$\frac{1}{2}^{+}$	0-	L_{0+}, E_{0+}
D_{13}	D_{33}	$\frac{1}{2}^{+}$	2^{-}	L_{2-}, E_{2-}
P_{11}	P_{31}	$\frac{1}{2}^{+}$	1+	M_{1-}
P_{13}	P_{33}	$\frac{1}{2}^{+}$	1^{+}	M_{1+}
P_{13}	P_{33}	$\frac{1}{2}^{+}$	1^{+}	L_{1+}, E_{1+}
F_{15}	F_{35}	$\frac{1}{2}^{+}$	3^{+}	L_{3-}, E_{3-}
D_{13}	D_{33}	$\frac{1}{2}^{+}$	2^{-}	M_{2-}
D_{15}	D_{35}	$\frac{1}{2}^{+}$	2^{-}	M_{2+}

Legendre Moments of Polarized Structure Function $\sigma_{LT'}$ 0.4 < Q² < 0.6 GeV²

 The polarized structure function σ_{LT}, was extracted from the CLAS data in the kinematical region

```
0.4 < Q<sup>2</sup> < 1 GeV<sup>2</sup>
1.1 < W < 1.8 GeV
```

- Legendre Polynomials of σ_{LT}, were analyzed with different resonances turned on/off
- The combined analysis of polarized and unpolarized data will give us information on electroexcitation amplitudes with focus on the second and third resonance regions
- PRC paper under review in CLAS collaboration