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Summary
• We derive a general formalism allowing the calculation of  decay 

amplitudes using lattice QCD (LQCD)

• Formalism for  (e.g. ) is a standard LQCD tool [Lellouch & Lüscher, 2001]

• Recently, considerable progress made in determining  amplitudes from the spectrum 
of 3 particle states obtained using LQCD [Refs in backup slides]

• We use the generic effective field theory (RFT) approach [Hansen & SS, `14, `15; Hansen, Romero-López & SS, `00]

• We extend the  formalism to  and  processes involving 3 degenerate 
(but not necessarily identical) spinless particles in the final state 

• Several phenomenologically relevant applications 

•  : LQCD can now (in principle) determine CP-conserving and violating amplitudes

•  (at first order in isospin breaking): alternative determination of  

•  : component of hadronic contributions to muonic 

1 ℋW 3

1 ℋW 2 K → ππ

3→3

3→3 0 J 3 1 ℋW 3

K → 3π

η→3π mu−md

γ* → 3π g−2

2
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Schematic of  formalism3→3

3

E0(L)

E1(L)

E2(L)

Kdf,3 M3
Infinite-volume 

integral eqs.
Quantization 

conditions

•  is an infinite-volume (but scheme dependent)  K matrix 

• It is real, and smooth aside from possible 3-particle resonance poles

• LQCD applications require a parametrization of  , e.g. a threshold expansion

• Integral equations ensure unitarity of , and incorporate initial- and final-state interactions

𝒦df,3 3→3

𝒦df,3

ℳ3

𝒦2

2- and 3-particle 
finite-volume spectrum 

from LQCD

ℳ2
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Schematic of  formalism1 ℋW 3

4

Infinite-volume 
integral eqs.

Constraint 
conditions

•  is a Lorentz-invariant infinite-volume (but scheme dependent)  amplitude 

• It is real (aside from phases in ) and smooth

• LQCD applications require a parametrization of 

• Integral equations incorporate final-state interactions into 

APV
K3π 1 ℋW 3

ℋW

APV
K3π

TK3π

𝒦2
APV

K3π

Kdf,3

⟨3π, L |ℋW |K, L⟩
finite-volume matrix  
element from LQCD

TK3π



S.R.Sharpe, “Generalizing the Lellouch-Lüscher formula to three-particle decays,” Hadron 2021, 7/28/2021 /12

Ingredients from LQCD

5

(1) Finite-volume matrix element:  ⟨3π, L |ℋW |K, L⟩

ℋW

s̄

u

K+
u

u

ū

d̄

d̄
d

τ = 0 τKτ3π

Send  to 
project onto kaon, 
with energy 

τK ≪ 0

EK(P)

L

Use  operator 
determined from 

spectrum calculation 
to project onto 

desired finite-volume 
state with energy 

3π

En(P, L)

Add parts of  
one at a time

ℋW

Adjust L so that 
En(P, L) = EK(P)

(1I)  and  from 2- and 3-particle spectrum 𝒦2 𝒦df,3
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Method of derivation
• Determine all-orders expressions for  and  finite-volume 

correlators in generic relativistic EFT in which d.o.f. are s and s
3→3 1 ℋW 3

π K

6

• Dominant  finite-volume dependence arises from  cuts

• Cuts connected by short-distance infinite-volume amplitudes in which the  poles 
regulated by PV prescription

1/Ln 3π

3π

J
H
E
P
0
4
(
2
0
2
1
)
1
1
3

and BPV. The superscript is a reminder that loops in these quantities are defined using a
PV prescription.

We next do a Wick rotation (x0 → −ix4) on the underlying correlation function, so
that it is evaluated in Euclidean space-time. This results in

CM
AB,L(E,P ) = −iCAB,L(P )

∣∣
P4=iE

, (2.31)

CAB,L(P ) =
∫ ∞

−∞
dx4

∫

L
d3x e−iPx〈TEA(x)B(0)〉 , (2.32)

where again P = (P , P4). It follows that CAB,L can be written

CAB,L(P ) = CAB,∞(P ) − APV 1
F−1
3 +Kdf,3

BPV , (2.33)

where now APV, F3, Kdf,3 and BPV are written as functions of P by setting E = −iP4.
The poles now lie on the imaginary axis, at the positions P4 = iEn, where En is a solution
of the quantization condition eq. (2.7).

The reason for these manipulations is that the two correlators that enter into the
expression (2.29) for the desired matrix element, C3π and CK3π, are in the class for which
eq. (2.33) holds. In particular, we can use the results of ref. [3] to write these correlators as

C3π,L(P ) = C3π,∞(P ) − APV
3π

1
F−1
3 +Kdf,3

APV†
3π , (2.34)

CK3π,L(P ) = CK3π,∞(P ) − APV
3π

1
F−1
3 +Kdf,3

APV
K3π . (2.35)

In eq. (2.34) we are using the result, demonstrated in appendix A, that if the source and
sink operators are related by hermitian conjugation, then the same holds for the endcap
factors. Note that this only holds because the latter are defined with the PV prescription.

We next evaluate the residues that enter eq. (2.29). Since the infinite-volume correla-
tors and the endcaps are smooth, infinite-volume functions, L-dependent poles only arise
from the zero eigenvalues in F−1

3 +Kdf,3. The required residues are thus

RΛµ
(
EΛ

n ,P , L
)
= lim

P4→iEΛ
n

−(EΛ
n + iP4)PΛµ · 1

F−1
3 +Kdf,3

· PΛµ, (2.36)

where the minus sign is for later convenience, and EΛ
n is one of the finite-volume three-pion

energies for the given choice of P , Λ and L. RΛµ is a matrix in the {k!m} space, which
can be evaluated explicitly given expressions for K2 (contained in F3) and Kdf,3. The idea
here is that these quantities have been previously determined (or, more realistically, con-
strained within some truncation scheme) by using the two- and three-particle quantization
conditions applied to the spectrum of two- and three-particle states.

An important property of RΛµ is that it has rank one. This is because only one of the
formally infinite tower of eigenvalues of PΛµ · (F−1

3 + Kdf,3) · PΛµ will vanish for a given
finite-volume energy EΛ

n (P , L). Denoting the relevant eigenvalue by λ(E,P ,Λµ,L) and
the corresponding normalized eigenvector by e(E,P ,Λµ,L), one finds

RΛµ
(
EΛ

n ,P , L
)
=
(

∂λ(E,P ,Λµ,L)
∂E

∣∣∣∣
E=EΛ

n (P ,L)

)−1
e(E,P ,Λµ,L) e†(E,P ,Λµ,L) . (2.37)

– 10 –

Matrix known from 
 analysis; 

has poles at finite-
volume energies 

3→3

This is what we want 
to extractCan determine and 

cancel from  
correlator

3→3
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Results (step 1)

7

• Each finite-volume matrix element determines a projection of APV
K3π

• Residue of finite-volume matrix determines vector v

• With enough matrix elements can determine parameters in APV
K3π For simplified case 

with no isospin;
Constrained by 

Lorentz invariance, 
particle-interchange 

symmetry

J
H
E
P
0
4
(
2
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2
1
)
1
1
3

eq. (2.43) must have the same phase as the combination v†APV
K3π. Finally, to extract the

value of AK3π, we must establish the phase of v itself, which has been left open so far.
The most natural convention is to simply require APV

3π and v to be individually real. In
this convention v† is also real, so any phase in the finite-volume matrix element on the
left-hand side of eq. (2.43) (resulting, for example, from a CP-violating phase in HW ) will
be inherited by APV

K3π.
As was already discussed in refs. [42, 44], the utility in carefully tracking this phase

information is that it allows one to extract relative phases between various matrix elements.
For example, if the weak Hamiltonian density is decomposed into operators O1(x) and
O2(x), it follows from eq. (2.43) that

〈En,P ,Λµ,L|O1(0)|K,P , L〉
〈En,P ,Λµ,L|O2(0)|K,P , L〉 =

v†APV
K3π[O1]

v†APV
K3π[O2]

. (2.44)

The overall phase in v† cancels, so the phase in the ratio of PV amplitudes on the right-
hand side is given by that of the ratio of the matrix elements on the left-hand side. This
phase information will be passed on to the decay matrix elements by solving the integral
equations described below in section 2.4.

2.3 Threshold expansion of APV
K3π

Since APV
K3π is an unfamiliar quantity, we discuss its properties in this brief subsection. We

recall that it is an infinite-volume on-shell quantity, given, crudely speaking, by calculating
all K → 3π diagrams with PV regulation for the poles. Thus it is an analytic function of
the kinematic variables, symmetric under interchange of any pair of final-state momenta.

A useful parametrization of APV
K3π is given by the threshold expansion, which is an

expansion in powers of relativistic invariants that vanish at threshold, for instance

∆ = m2
K − 9m2

π

9m2
π

. (2.45)

For the decays K+ → π+π+π− and K+ → π+π0π0, for example, ∆ ≈ 0.39 and 0.45,
respectively. Labelling the pion four-momenta p1, p2, and p3, so that P = pK = p1+p2+p3,
the three Mandelstam variables are

si = (pj + pk)2 = (P − pi)2 ,
3∑

i=1
si = m2

K + 3m2
π , (2.46)

where {i, j, k} are ordered cyclically. We will expand in dimensionless quantities that vanish
at threshold, namely ∆ and

∆i =
si − 4m2

π

9m2
π

, (2.47)

which satisfy∑i ∆i = ∆. Using this sum rule, and enforcing particle-interchange symmetry
and smoothness, we find7

APV
K3π = Aiso +A(2)∑

i

∆2
i +A(3)∑

i

∆3
i +A(4)∑

i

∆4
i +O(∆5) . (2.48)

7The presence of only a single term in each of the second, third and fourth orders is a pattern that does
not continue to higher orders.

– 12 –
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Results (step 2)

8

• Take appropriate  limit (with  prescription) and obtain decay amplitudeL → ∞ iϵ

• Consider finite-volume decay matrix element in EFT

• Resulting integral equations depend on  and , and connect  to 

• Similar to integral equations arising in  scattering, solutions to which have recently 
been obtained numerically [Hansen et al., 2009.04931; Jackura et al. 2010.09820]

𝒦df,3 𝒦2 APV
K3π TK3π

3→3

=

Now amputated
(and asymmetric)

J
H
E
P
0
4
(
2
0
2
1
)
1
1
3

iF/(2ωL3), leading to

T (u)
K3π,L =

(
iF

2ωL3

)−1
F3

i

1 +Kdf,3F3
APV

K3π , (2.57)

= L(u)
L

1
1 +Kdf,3F3

APV
K3π , (2.58)

where L(u)
L is given in eq. (2.16). Note that, unlike in the construction of M(u,u)

3,L described
in section 2.1, here there are no disconnected terms to drop.

With the expression for T (u)
K3π;k"m in hand, we next note, following ref. [4], that the

result can be extended to an arbitrary choice of k, not just one in the finite-volume set. The
form of eq. (2.58) remains unchanged, and the various quantities extend simply to arbitrary
k, as explained in ref. [4]. The result, T (u)

K3π,L(k)"m, is still a finite-volume quantity, since
internal loops remain summed. We now insert iε factors to regulate the poles in F and G,
and take the infinite-volume limit holding k fixed

T (u)
K3π(k)"m = lim

ε→0+
lim
L→∞

T (u)
K3π,L(k)"m

∣∣∣∣
E→E+iε

. (2.59)

This gives the correct asymmetric infinite-volume decay amplitude because, in the limit, all
sums in Feynman diagrams that run over a pole (which are those in which three particles
can go on shell) are replaced by integrals in which the pole is regulated by the standard
iε prescription.

The final step is to obtain the complete decay amplitude by symmetrizing, which
corresponds to adding all possible attachments of the momentum labels to the Feynman
diagrams. This is effected by

TK3π(k, â∗) ≡ S {TK3π(k)"m} , (2.60)

= T (u)
K3π(k, â∗) + T (u)

K3π(a, b̂∗) + T (u)
K3π(b, k̂∗) , (2.61)

where T (u)
K3π,L(k, â∗) is obtained by combining T (u)

K3π,L(k)"m with spherical harmonics as in
eq. (2.50). The notation in eq. (2.61) is the natural generalization of that given above:
just as (ωa∗ ,a∗) is the result of boosting (ωa,a) to the CMF of the {a, b} pair (with
b = P − k −a), so (ωb∗ , b∗) is the result of boosting (ωb, b) to the CMF of the {b,k} pair,
while (ωk∗ ,k∗) is the result of boosting (ωk,k) to the CMF of the {k,a} pair.

Applying this procedure to the result eq. (2.58) for T (u)
K3π,L leads to a set of integral

equations. Since the steps are very similar to those in ref. [4], we simply quote the final
results. As for T (u)

K3π, the {k#m} indices used in finite volume go over in infinite-volume
to a dependence on the continuous spectator momentum, k, as well as an unchanged
dependence on # and m. Thus the matrix indices #m remain, and will be implicit in the
following equations, while the dependence on k will be explicit.

The combination (1 +M2,LG)−1M2,L, which appears in L(u)
L and in F3, goes over in

infinite volume to D(u,u)
23 (p,k)"′m′;"m (using the notation of ref. [16]), which satisfies

D(u,u)
23 (p,k) = δ(p − k)M2(k) − M2(p)

∫

r
G∞(p, r)D(u,u)

23 (r,k) , (2.62)

– 15 –
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Isotropic approximation
•  and  are independent of momenta, and  is pure s-wave

• Only a single finite-volume matrix element from LQCD is needed to determine  

• Integral equations still needed, but simplify considerably

• Can combine two steps & give single expression (ignoring isospin)

APV
K3π 𝒦df,3 𝒦2

APV
K3π

9
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1
1
3

Taking the infinite volume limit as before, we obtain

T (u),iso
K3π (k, â∗) = S

{
T (u),iso
K3π (k)

}
, (2.81)

where
T (u),iso
K3π (k) = L(u),iso(k) Aiso

1 +Kiso
df,3F

∞,iso
3

. (2.82)

Here the momentum dependence arises solely from the final-state interactions in

L(u),iso(k) = 1
3 −

∫

s
D(u,u)

23 (k, s)ρ̃PV(s) , (2.83)

where D(u,u)
23 (k, s) still satisfies eq. (2.62), but now with all quantities restricted to " =

m = 0, and
F∞,iso
3 =

∫

r
ρ̃PV(r)L(u),iso(r) . (2.84)

In this case, the only integral equation that has to be solved is that for D(u,u)
23 , as has been

done recently in refs. [27, 54]. We note that F∞,iso
3 and L(u),iso are, in general, complex.

The expressions in the isotropic approximation are sufficiently simple that one can
readily combine eqs. (2.79) and (2.82) to display the direct relation between the finite-
volume matrix element and the physical amplitude. Unpacking the compact notation used
above slightly, we reach

|T iso
K3π(E∗,m2

12,m
2
23)|2 = 2EK(P )L6

∣∣∣ 〈En,P , A1, L|HW (0) |K,P , L〉
∣∣∣
2

×
∣∣∣∣L

iso(E∗,m2
12,m

2
23)

1
1 +Kiso

df,3(E∗)F∞,iso
3 (E∗)

∣∣∣∣
2(∂F iso

3 (E,P , L)−1

∂E
+

∂Kiso
df,3(E∗)
∂E

)

,

(2.85)

where E (and thus E∗) is fixed by the value of finite-volume energy, tuned to E∗ = MK

for a physical decay amplitude. We have emphasized that the right-hand side depends on
the two squared invariant masses m2

12 and m2
23, defined by

m2
12 = (E − ωk)2 − (P − k)2 , (2.86)

m2
23 = (E − ωa)2 − (P − a)2 , (2.87)

and have also introduced the symmetrized final-state interaction factor.

Liso(E∗,m2
12,m

2
23) ≡ L(u),iso(k) + L(u),iso(a) + L(u),iso(b) . (2.88)

At this stage we can comment on the relationship of our result to that of ref. [52]. We
expect that the isotropic limit, given in eq. (2.85), is equivalent to the result of ref. [52],
aside from differences in the schemes used to define the short-distance quantities. In-
deed, the equations have the same basic structure, with a contribution resulting from final
state interactions (the term involving Liso) and a Lellouch-Lüscher-like correction factor.
Demonstrating the precise equivalence, however, is nontrivial, since our approach based

– 19 –

Analog of Lellouch-Lüscher factor

Obtain by solving single 
integral equation involving;
Incorporates two-particle 

final-state interactions
Incorporates three-particle 

final-state interactions

Analogous to expression obtained using leading-order NREFT 
in [Müller & Rusetsky, 2012.13957]
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Comparison with LL
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Taking the infinite volume limit as before, we obtain

T (u),iso
K3π (k, â∗) = S

{
T (u),iso
K3π (k)

}
, (2.81)

where
T (u),iso
K3π (k) = L(u),iso(k) Aiso

1 +Kiso
df,3F

∞,iso
3

. (2.82)

Here the momentum dependence arises solely from the final-state interactions in

L(u),iso(k) = 1
3 −

∫

s
D(u,u)

23 (k, s)ρ̃PV(s) , (2.83)

where D(u,u)
23 (k, s) still satisfies eq. (2.62), but now with all quantities restricted to " =

m = 0, and
F∞,iso
3 =

∫

r
ρ̃PV(r)L(u),iso(r) . (2.84)

In this case, the only integral equation that has to be solved is that for D(u,u)
23 , as has been

done recently in refs. [27, 54]. We note that F∞,iso
3 and L(u),iso are, in general, complex.

The expressions in the isotropic approximation are sufficiently simple that one can
readily combine eqs. (2.79) and (2.82) to display the direct relation between the finite-
volume matrix element and the physical amplitude. Unpacking the compact notation used
above slightly, we reach

|T iso
K3π(E∗,m2

12,m
2
23)|2 = 2EK(P )L6

∣∣∣ 〈En,P , A1, L|HW (0) |K,P , L〉
∣∣∣
2

×
∣∣∣∣L

iso(E∗,m2
12,m

2
23)

1
1 +Kiso

df,3(E∗)F∞,iso
3 (E∗)

∣∣∣∣
2(∂F iso

3 (E,P , L)−1

∂E
+

∂Kiso
df,3(E∗)
∂E

)

,

(2.85)

where E (and thus E∗) is fixed by the value of finite-volume energy, tuned to E∗ = MK

for a physical decay amplitude. We have emphasized that the right-hand side depends on
the two squared invariant masses m2

12 and m2
23, defined by

m2
12 = (E − ωk)2 − (P − k)2 , (2.86)

m2
23 = (E − ωa)2 − (P − a)2 , (2.87)

and have also introduced the symmetrized final-state interaction factor.

Liso(E∗,m2
12,m

2
23) ≡ L(u),iso(k) + L(u),iso(a) + L(u),iso(b) . (2.88)

At this stage we can comment on the relationship of our result to that of ref. [52]. We
expect that the isotropic limit, given in eq. (2.85), is equivalent to the result of ref. [52],
aside from differences in the schemes used to define the short-distance quantities. In-
deed, the equations have the same basic structure, with a contribution resulting from final
state interactions (the term involving Liso) and a Lellouch-Lüscher-like correction factor.
Demonstrating the precise equivalence, however, is nontrivial, since our approach based

– 19 –

•  result in isotropic approximation (and without isospin)1→3

•  result in s-wave approximation (only case used in practice to date)1→2

J
H
E
P
0
4
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2
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2
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)
1
1
3

in short-distance quantities, Kdf,3 and APV
K3π, that are symmetric under particle exchange,

whereas the approach of ref. [52] does not symmetrize until the very end. Presumably,
the mapping can be determined using the relation between symmetric and asymmetric
approaches explained in refs. [16, 17], but this is beyond the scope of the present work.

In closing, we note that eq. (2.85) is analogous to the original Lellouch-Lüscher relation
presented in ref. [32]. In particular, the two-particle result is reached by making the
replacements

T iso
K3π(E∗,m2

12,m
2
23) −→ TK2π(E) , (2.89)

Liso(E∗,m2
12,m

2
23) −→ 1 , (2.90)

Kiso
df,3(E∗) −→ K2(E) , (2.91)

F∞,iso
3 (E∗) −→ −iρ(E) ≡ −i

q

16πE
, (2.92)

F iso
3 (E,P , L) −→ F (E,L) , (2.93)

where we have also restricted attention to the P = 0 frame. On the right-hand side we
have introduced the physical K → ππ amplitude TK2π(E), extended to allow for final-state
energies different from the kaon mass. We have also used the two-particle K-matrix, K2,
and the two-particle finite-volume function, F , both restricted to the s-wave. These are
essentially the same quantities as appearing in eq. (2.6), in the definition of F3, but without
the implicit sub-threshold regulator used there and without the spectator-momentum index.
We have also introduced the two-particle phase-space, ρ(E), with q =

√
E2/4 − m2.

Making the indicated substitutions into eq. (2.85) yields

|TK2π(E)|2 = 2MKL6| 〈En, A1, L|HW (0) |K,L〉 |2

×
∣∣∣∣

1
1 − iK2(E)ρ(E)

∣∣∣∣
2(∂F (E,L)−1

∂E
+ ∂K2(E)

∂E

)

. (2.94)

Substituting the definitions of the scattering phase δ(E) and the L-dependent, so-called
pseudophase φ(E,L)

K2(E) = 16πE tan δ(E)
q

, F (E,L)−1 = 16πE tanφ(E,L)
q

, (2.95)

one can easily reach eq. (4.5) of ref. [32], after some algebraic manipulations.
This completes our discussion of the formalism in the context of the simplified theory.

We now turn to realistic applications of these results.

3 Applications to physical processes

In this section, we describe the generalization of the previous analysis to processes involving
three-pion final states in isosymmetric QCD. This allows our results to be applied to several
processes of phenomenological interest: (i) the electromagnetic transition γ∗ → 3π, which
contributes to the hadronic vacuum polarization piece of the muon’s magnetic momentum,

– 20 –

Alternative form of
Lellouch-Lüscher result

Includes Watson phase
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Size of finite-volume corrections
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Taking the infinite volume limit as before, we obtain

T (u),iso
K3π (k, â∗) = S

{
T (u),iso
K3π (k)

}
, (2.81)

where
T (u),iso
K3π (k) = L(u),iso(k) Aiso

1 +Kiso
df,3F

∞,iso
3

. (2.82)

Here the momentum dependence arises solely from the final-state interactions in

L(u),iso(k) = 1
3 −

∫

s
D(u,u)

23 (k, s)ρ̃PV(s) , (2.83)

where D(u,u)
23 (k, s) still satisfies eq. (2.62), but now with all quantities restricted to " =

m = 0, and
F∞,iso
3 =

∫

r
ρ̃PV(r)L(u),iso(r) . (2.84)

In this case, the only integral equation that has to be solved is that for D(u,u)
23 , as has been

done recently in refs. [27, 54]. We note that F∞,iso
3 and L(u),iso are, in general, complex.

The expressions in the isotropic approximation are sufficiently simple that one can
readily combine eqs. (2.79) and (2.82) to display the direct relation between the finite-
volume matrix element and the physical amplitude. Unpacking the compact notation used
above slightly, we reach

|T iso
K3π(E∗,m2

12,m
2
23)|2 = 2EK(P )L6

∣∣∣ 〈En,P , A1, L|HW (0) |K,P , L〉
∣∣∣
2

×
∣∣∣∣L

iso(E∗,m2
12,m

2
23)

1
1 +Kiso

df,3(E∗)F∞,iso
3 (E∗)

∣∣∣∣
2(∂F iso

3 (E,P , L)−1

∂E
+

∂Kiso
df,3(E∗)
∂E

)

,

(2.85)

where E (and thus E∗) is fixed by the value of finite-volume energy, tuned to E∗ = MK

for a physical decay amplitude. We have emphasized that the right-hand side depends on
the two squared invariant masses m2

12 and m2
23, defined by

m2
12 = (E − ωk)2 − (P − k)2 , (2.86)

m2
23 = (E − ωa)2 − (P − a)2 , (2.87)

and have also introduced the symmetrized final-state interaction factor.

Liso(E∗,m2
12,m

2
23) ≡ L(u),iso(k) + L(u),iso(a) + L(u),iso(b) . (2.88)

At this stage we can comment on the relationship of our result to that of ref. [52]. We
expect that the isotropic limit, given in eq. (2.85), is equivalent to the result of ref. [52],
aside from differences in the schemes used to define the short-distance quantities. In-
deed, the equations have the same basic structure, with a contribution resulting from final
state interactions (the term involving Liso) and a Lellouch-Lüscher-like correction factor.
Demonstrating the precise equivalence, however, is nontrivial, since our approach based
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•  result in isotropic approximation (and without isospin)1→3
J
H
E
P
0
4
(
2
0
2
1
)
1
1
3

Figure 2. Plot of the conversion factor appearing in eq. (2.79) (rescaled as indicated by the plot
label) in the vicinity of the three-particle threshold for the case of constant Kiso

df,3. The factor
is plotted versus energy E for P = 0 and mL = 6. The two-particle K matrix, entering F iso

3 ,
determined by keeping only the scattering length, a, in the effective range expansion. The three
curves correspond to three values of the scattering length, as indicated by the legend, and each
unfilled marker corresponds to the ground-state energy for the corresponding ma value when Kiso

df,3 =
0. In particular, the blue square corresponds to the non-interacting limit. The fact that the
conversion factor is unity in the latter case indicates that the non-interacting matrix elements are
equal in finite and infinite volume, up to a trivial normalization. More generally, once the scattering
length is determined, these types of curves allow one to directly relate — within the isotropic
approximation — any value of measured three-particle energy (horizontal axis) to a matrix element
conversion factor (vertical axis).

Here we have chosen the overall phase according to the convention discussed above, so that
vison is real. Using eq. (2.43) we now obtain

√
2EK(P )L3 〈En,P , A1, L|HW (0) |K,P , L〉 = (rison )1/2F iso

3 Aiso . (2.78)

This can be massaged into a simple form for determining Aiso

Aiso(E∗
n)2 = 2EK(P )L6 〈En,P , A1, L|HW (0) |K,P , L〉2

×
(

∂F iso
3 (E,P , L)−1

∂E
+

∂Kiso
df,3(E∗)
∂E

)

E=E
A1
n (P ,L)

. (2.79)

Thus, in the isotropic approximation, we need to measure the matrix element to only a
single three-pion state in order to determine Aiso at that energy. In figure 2 we plot the
conversion factor appearing on the second line of this equation for the case of constant
Kiso

df,3, implying ∂Kiso
df,3(E∗)/∂E = 0.

The relationship of Aiso to TK3π is also substantially simplified in the isotropic approx-
imation. We first note that eq. (2.58) simplifies to

T (u),iso
K3π,L = L(u)

L |1〉 1
1 +Kiso

df,3F
iso
3

Aiso . (2.80)
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Summary & Outlook
• We have derived a general, relativistically-invariant, formalism allowing the 

calculation of  and  decay/transition amplitudes using LQCD

• It piggybacks on the recent progress on  amplitudes

• It holds for any such process involving three degenerate spinless particles in the final state

• It requires two steps, the first accounting for finite-volume effects, and the second 
incorporating the effects of final-state interactions

• We hope that applications will be possible in the near future

• Distillation and other algorithmic advances allow the calculation of the necessary quark 
contractions

•  is the simplest to study; isoscalar part of current couples to I=0 ( ) channel 

•  is next simplest, as it involves insertion of quark bilinear; couples to I=1

•  is most challenging, with  a four-fermion operator, leading to more 
complicated contractions, and I=0, 1 and 2 final states

1 ℋW 3 0 J 3

3→3

γ* → 3π ω

η→3π

K→3π ℋW

12
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Thanks 
Any questions?
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Backup slides
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Scope & Notation
• Identical spinless particles of mass m (e.g. )

• Z2 symmetry — no  transitions

• All quantities in QC3 are infinite-dimensional matrices with indices  describing 3 
on-shell particles with total energy-momentum 

3π+

2 → 3

{ ⃗k , ℓ, m}
(E, ⃗P )

15

â⇤ �! `,m
(E � !k, ~P � ~k)

(!k,~k)
BOOST

2-particle CMF angular momentum: ℓ, mfinite volume “spectator” momentum: ⃗k

e.g. [𝒦(u,u)
df,3 ]kℓm;pℓ′ m′ 
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F3 collects 2-particle interactions

16

F3 = [ F̃
3

− F̃
1

(2ωL3𝒦2)−1 + F̃ + G̃
F̃ ]

• F & G are known geometrical functions, 
containing cutoff function H

G̃ pℓ′ m′ ;kℓm =
1

2ωpL3 ( k*
q*p )

ℓ′ 
4πYℓ′ m′ ( ̂k*)H( ⃗p )H( ⃗k )Y*ℓm( ̂p*)

(P − k − p)2 − m2 ( p*
q*k )

ℓ
1

2ωkL3

F̃ pℓ′ m′ ;kℓm =
1

2ωkL3
δpk H( ⃗k ) FPV,ℓ′ m′ ;ℓm(E − ωk, ⃗P − ⃗k , L)

�(E − ωk, ⃗P − ⃗k ) →

p
k

�
k k
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Other work

★NREFT approach 

• H.-W. Hammer, J.-Y. Pang & A. Rusetsky, 1706.07700, JHEP & 1707.02176 , JHEP [Formalism & examples]

• M. Döring et al., 1802.03362 , PRD [Numerical implementation]

• J.-Y. Pang et al., 1902.01111 , PRD [large volume expansion for excited levels]

• F. Müller, T. Yu & A. Rusetsky, 2011.14178, PRD [large volume expansion for I=1 three pion ground state]

• F. Romero-López, A. Rusetsky, N. Schlage & C. Urbach, 2010.11715, JHEP [generalized large-volume exps]

• F. Müller & A. Rusetsky, 2012.13957, JHEP [Three-particle analog of Lellouch-Lüscher formula]

★Reviews 

• A. Rusetsky, 1911.01253 [LATTICE 2019 plenary]

• M. Mai, M. Döring and A. Rusetsky, 2103.00577 [Review of formalisms and chiral extrapolations]

★ Implementing RFT integral equations 

• A. Jackura et al., 2010.09820  [Solving s-wave RFT integral equations in presence of bound states]

• M.T. Hansen et al. (HADSPEC), 2009.04931, PRL [Calculating  spectrum and using to determine 
three-particle scattering amplitude]

3π+

http://arxiv.org/abs/arXiv:1706.07700
http://arxiv.org/abs/arXiv:1707.02176
http://arxiv.org/abs/arXiv:1802.03362
http://arxiv.org/abs/arXiv:1902.01111
https://arxiv.org/abs/2011.14178
https://arxiv.org/abs/2010.11715
https://arxiv.org/abs/2012.13957
https://arxiv.org/abs/1911.01253
https://arxiv.org/abs/2103.00577
https://arxiv.org/abs/2010.09820
https://arxiv.org/abs/2009.04931


/12S.R.Sharpe, “Generalizing the Lellouch-Lüscher formula to three-particle decays,” Hadron 2021, 7/28/2021 22

Alternate 3-particle approaches
★ Finite-volume unitarity (FVU) approach 

• M. Mai & M. Döring, 1709.08222 , EPJA  [formalism]

• M. Mai et al., 1706.06118, EPJA [unitary parametrization of M3 involving R matrix; used in FVU approach]

• A. Jackura et al., 1809.10523, EPJC [further analysis of R matrix parametrization]

• M. Mai & M. Döring, 1807.04746 , PRL [3 pion spectrum at finite-volume from FVU]

• M. Mai et al., 1909.05749 ,PRD [applying FVU approach to spectrum from Hanlon & Hörz]

• C. Culver et al., 1911.09047, PRD [calculating  spectrum and comparing with FVU predictions]

• A. Alexandru et al., 2009.12358 , PRD [calculating  spectrum and comparing with FVU predictions]

• R. Brett et al., 2101.06144 [determining  interaction from LQCD spectrum]

3π+

3π+

3K−

3π+

★HALQCD approach  

• T. Doi et al. (HALQCD collab.), 1106.2276, Prog.Theor.Phys. [3 nucleon potentials in NR regime]

http://arxiv.org/abs/arXiv:1709.08222
http://arxiv.org/abs/arXiv:1706.06118
https://arxiv.org/abs/1809.10523
http://arxiv.org/abs/arXiv:1807.04746
https://arxiv.org/abs/1909.05749
https://arxiv.org/abs/1911.09047
https://arxiv.org/abs/2009.12358
https://arxiv.org/abs/2101.06144
http://arxiv.org/abs/arXiv:1106.2276

