Decays of an exotic 1⁻⁺ hybrid meson resonance in QCD

Christopher Thomas, University of Cambridge

c.e.thomas@damtp.cam.ac.uk

19th International Conference on Hadron Spectroscopy and Structure (Hadron 2021), 26 July – 1 August 2021

Experiments have observed a number of structures that don't fit into the quark-model picture of mesons.

Exotic quantum numbers are particularly interesting, e.g. $J^{PC} = 0^{--}, 0^{+-}, \mathbf{1}^{-+}, 2^{+-}$

One proposed type of exotic is a **hybrid meson**.

[PL B 740, 303 (2015)]

Rodas *et al* (JPAC) [PRL 122, 042002 (2019)]: single resonance, *m* = 1564(24)(86) MeV, Γ = 492(54)(102) MeV

Kopf *et al* [2008.11566] CB and COMPASS data: single resonance, $m = (1561.6 \pm 3.0^{+6.6}_{-2.6}) \text{ MeV}$, $\Gamma = (388.1 \pm 5.4^{+0.2}_{-14.1}) \text{ MeV}$

Rodas *et al* (JPAC) [PRL 122, 042002 (2019)]: single resonance, *m* = 1564(24)(86) MeV, Γ = 492(54)(102) MeV

Kopf *et al* [2008.11566] CB and COMPASS data: single resonance, $m = (1561.6 \pm 3.0^{+6.6}_{-2.6}) \text{ MeV}$, $\Gamma = (388.1 \pm 5.4^{+0.2}_{-14.1}) \text{ MeV}$

Lattice QCD spectroscopy

See Dave Wilson's talk on Thursday for more of an overview

Systematically-improvable first-principles calculations

Finite-volume energy eigenstates from:

$$C_{ij}(t) = \left\langle 0 \left| \mathcal{O}_i(t) \mathcal{O}_j^{\dagger}(0) \right| 0 \right\rangle$$

Large bases of interpolating operators (with appropriate structures)

[Dudek, Edwards, Guo, CT, PR D88, 094505 (2013)]

Large bases of only fermionbilinear ops $\sim \bar{\psi} \Gamma D \dots \psi$

[Dudek, Edwards, Guo, CT, PR D88, 094505 (2013)]

Large bases of only fermionbilinear ops $\sim \bar{\psi} \Gamma D \dots \psi$

[Dudek, Edwards, Guo, CT, PR D88, 094505 (2013)]

Large bases of only fermionbilinear ops $\sim \bar{\psi} \Gamma D \dots \psi$

[Dudek, Edwards, Guo, CT, PR D88, 094505 (2013)]

Large bases of only fermionbilinear ops $\sim \bar{\psi} \Gamma D \dots \psi$

Lattice QCD spectroscopy

See Dave Wilson's talk on Thursday for more of an overview

Most hadrons appear as resonances in scattering of lighter hadrons

Lüscher method (and extensions): relate **finite-volume energy levels** ${E_{cm}}$ to **infinite-volume scattering** *t*-matrix.

Elastic scattering: one-to-one mapping $E_{cm} \leftrightarrow t(E_{cm})$

[Complication: reduced sym. of lattice vol. \rightarrow mixing of partial waves]

Lüscher method (and extensions): relate **finite-volume energy levels** ${E_{cm}}$ to **infinite-volume scattering** *t*-matrix.

Elastic scattering: one-to-one mapping $E_{cm} \leftrightarrow t(E_{cm})$

Coupled channels: under-constrained problem (each E_{cm} constrains *t*-matrix at that E_{cm}) Parameterise $t(E_{cm})$ using various *K*-matrix forms, ...

Lüscher method (and extensions): relate **finite-volume energy levels** ${E_{cm}}$ to **infinite-volume scattering** *t*-matrix.

Elastic scattering: one-to-one mapping $E_{cm} \leftrightarrow t(E_{cm})$

Coupled channels: under-constrained problem (each E_{cm} constrains *t*-matrix at that E_{cm}) Parameterise $t(E_{cm})$ using various *K*-matrix forms, ...

Analytically continue $t(E_{cm})$ in complex E_{cm} plane, look for poles.

[Complication: reduced sym. of lattice vol. \rightarrow mixing of partial waves]

Lüscher method (and extensions): relate **finite-volume energy levels** ${E_{cm}}$ to **infinite-volume scattering** *t*-matrix.

Elastic scattering: one-to-one mapping $E_{cm} \leftrightarrow t(E_{cm})$

Coupled channels: under-constrained problem (each E_{cm} constrains *t*-matrix at that E_{cm}) Parameterise $t(E_{cm})$ using various *K*-matrix forms, ...

Analytically continue $t(E_{cm})$ in complex E_{cm} plane, look for poles.

Demonstrated in calcs. of ρ , light scalars, b_1 , charm mesons, ...

[Complication: reduced sym. of lattice vol. \rightarrow mixing of partial waves]

1^{-+} channel with SU(3)_F flavour sym

SU(3)_F symmetry $(m_u = m_d = m_s)$ $m_\pi \approx 700 \text{ MeV}, m_\rho \approx 1000 \text{ MeV}, m_{\eta'} \approx 940 \text{ MeV}$

[**Woss**, Dudek, Edwards, Thomas, Wilson, PR D103, 054502 (2021), 2009.10034]

1^{-+} channel with SU(3)_F flavour sym

SU(3)_F symmetry $(m_u = m_d = m_s)$ $m_\pi \approx 700 \text{ MeV}, m_\rho \approx 1000 \text{ MeV}, m_{\eta'} \approx 940 \text{ MeV}$

[**Woss**, Dudek, Edwards, Thomas, Wilson, PR D103, 054502 (2021), 2009.10034]

1^{-+} channel with SU(3)_F flavour sym

SU(3)_F symmetry $(m_u = m_d = m_s)$ $m_\pi \approx 700 \text{ MeV}, m_\rho \approx 1000 \text{ MeV}, m_{\eta'} \approx 940 \text{ MeV}$

 $a_t E$

 $h_1^s \eta^s$

 $b_1\pi$

 $a_1\eta$

7

[PR D103, 054502 (2021)]

7

[PR D103, 054502 (2021)]

Constrain eight 1⁻⁺ coupled partial waves with 53 energy levels

$$\eta^{1} \eta^{8} \{ {}^{1}P_{1} \}$$

$$\omega^{8} \eta^{8} \{ {}^{3}P_{1} \}$$

$$\omega^{8} \omega^{8} \{ {}^{3}P_{1} \}, \ \omega^{1} \omega^{8} \{ {}^{1}P_{1}, {}^{3}P_{1}, {}^{5}P_{1} \}$$

$$f_{1}^{8} \eta^{8} \{ {}^{3}S_{1} \}, \ h_{1}^{8} \eta^{8} \{ {}^{3}S_{1} \}$$

(Another 8 energy levels constrain three 3⁻⁺ partial waves.)

Constrain eight 1⁻⁺ coupled partial waves with 53 energy levels

[PR D103, 054502 (2021)]

Scattering amps – example param

Scattering amps – example param

[PR D103, 054502 (2021)]

Pole and couplings

Pole and couplings

[PR D103, 054502 (2021)]

Extrapolation of couplings

Attempt crude extrapolation to physical masses (break SU(3)_F symmetry).

Assume couplings scale with appropriate barrier factor k^e.

PDG masses and m_R = 1564 MeV.

$$|c|^{\text{phys}} = \left| \frac{k^{\text{phys}}(m_R^{\text{phys}})}{k(m_R)} \right|^{\ell} |c|$$

$$\Gamma(R \rightarrow i) = \frac{|c_i^{\rm phys}|^2}{m_R^{\rm phys}} \cdot \rho_i(m_R^{\rm phys})$$

Extrapolation of couplings

Attempt crude extrapolation to physical masses (break SU(3)_F symmetry).

Assume couplings scale with appropriate barrier factor k^e.

PDG masses and m_R = 1564 MeV.

 $\Gamma = \Sigma_i \Gamma_i = 139 - 590 \text{ MeV}$

c.f. JPAC: Γ = 492(54)(102) MeV Kopf *et al*: Γ = (388.1 ± 5.4^{+0.2}_{-14.1}) MeV

	$\Gamma_i/{ m MeV}$
$\eta\pi$	$0 \rightarrow 1$
$\rho\pi$	$0 \rightarrow 20$
$\eta'\pi$	$0 \rightarrow 12$
$b_1\pi$	$139 \rightarrow 529$
$K^*\overline{K}$	$0 \rightarrow 2$
$f_1(1285)\pi$	$0 \rightarrow 24$
$\rho\omega\{{}^1\!P_1\}$	$\lesssim 0.03$
$\rho\omega\{^{3}P_{1}\}$	$\lesssim 0.09$
$\rho\omega\{{}^5\!P_1\}$	$\lesssim 0.03$
$f_1(1420)\pi$	$0 \rightarrow 2$

[PR D103, 054502 (2021)]

Extrapolation of couplings

Attempt crude extrapolation to physical masses (break SU(3)_F symmetry).

Assume couplings scale with appropriate barrier factor k^e.

PDG masses and m_R = 1564 MeV.

```
\Gamma = \Sigma_i \Gamma_i = 139 - 590 \text{ MeV}
```

c.f. JPAC: Γ = 492(54)(102) MeV Kopf *et al*: Γ = (388.1 ± 5.4 $^{+0.2}_{-14.1}$) MeV [PR D103, 054502 (2021)]

	$\Gamma_i/{ m MeV}$
$\eta\pi$	$0 \rightarrow 1$
$\rho\pi$	$0 \rightarrow 20$
$\eta'\pi$	$0 \rightarrow 12$
$b_1\pi$	$139 \rightarrow 529$
$K^*\overline{K}$	$0 \rightarrow 2$
$f_1(1285)\pi$	$0 \rightarrow 24$
$\rho\omega\{^1P_1\}$	$\lesssim 0.03$
$\rho\omega\{^{3}P_{1}\}$	$\lesssim 0.09$
$\rho\omega\{{}^5\!P_1\}$	$\lesssim 0.03$
$f_1(1420)\pi$	$0 \rightarrow 2$

LQCD calc in McNeile & Michael [PR D73, 074506 (2006)]: consider setup with $m_{\pi} \approx 500$ MeV, $m_{\pi_1} = m_{b_1} + m_{\pi}$

Summary

- First determination of the lightest exotic J^{PC} = 1⁻⁺ resonance using lattice QCD.
- With SU(3)_F sym and $m_{\pi} \approx 700$ MeV: **narrow resonance** in flavour-octet 1⁻⁺ channel.
- Weak coupling to open channels, strong coupling to at least one closed axial-vector-pseudoscalar channel.
- Simple extrapolation to physical masses, breaking SU(3)_F \rightarrow potentially **broad resonance** with large decay to b₁ π (would $\rightarrow \omega \pi \pi \rightarrow \pi \pi \pi \pi \pi$)
- Calculation with lighter light-quarks? (three-meson decays...)
- Other exotic quantum numbers?

Acknowledgements

Hadron Spectrum Collaboration

[www.hadspec.org]

Jefferson Lab and surroundings, USA:

JLab: Robert Edwards, Jie Chen, Frank Winter; ORNL: Bálint Joó W&M: Jozef Dudek¹, Arkaitz Rodas, *Christopher Johnson*, *Archana Radhakrishnan, Felipe Ortega* (¹ and Jefferson Lab) ODU: Raúl Briceño¹, Andrew Jackura, Luka Leskovec

Trinity College Dublin, Ireland:

Michael Peardon, Sinéad Ryan, Nicolas Lang

University of Cambridge, UK:

CT, Bipasha Chakraborty, David Wilson, James Delaney

Edinburgh, UK: Max Hansen; Tata Institute, India: Nilmani Mathur