$\begin{array}{c} \text{High energy } \pi^- \rho \to \pi^- \eta^{(\prime)} \rho \text{ production} \\ \pi^+ \pi^- \text{ photoproduction} \\ & \text{Summary} \end{array}$

Photo- and hadron-production of mesons

Łukasz Bibrzycki on behalf of the JPAC collaboration

Pedagogical University of Krakow

19th International Conference on Hadron Spectroscopy and Structure, Ciudad de México 26 July - 1 August 2021

 $\begin{array}{c} \text{Introduction}\\ \text{High energy } \pi^- \rho \rightarrow \pi^- \eta^{(\prime)} \rho \text{ production}\\ \pi^+ \pi^- \text{ photoproduction}\\ \text{Summary} \end{array}$

Topics to be covered

I will focus on two topics recently studied by the JPAC collaboration:

- High energy $\pi^- p \rightarrow \pi^- \eta^{(\prime)} p$ production
- **②** Photoproduction of resonances in the $\pi^+\pi^-$ system

- - E - N

Motivation of the $\pi^-\eta^{(\prime)}$ channel study

- $\pi^{-}\eta^{(\prime)}$ pairs constitute a golden channel for the searches of hybrid exotics (odd partial waves are exotic)
- COMPASS experiment at CERN (Adolph et al. PLB 740, 2015) observed a strong forward-backward asymmetry in the $\pi^-\eta^{(\prime)}$ channels (stronger in the $\pi\eta'$ channel)
- the asymmetry is due to odd-even partial wave interference
- the strongest odd wave is the P-wave, which in the resonance region can be attributed to the π_1 hybrid
- relation between the high and low invariant mass region can be described in terms of Finite Energy Sum Rules (special kind of dispersion relations)

・ 一 マ ト ・ 日 ト ・

Experimental motivation

Objectives:

- Describe the $\pi^-\eta^{(\prime)}$ production above the resonance region.
- Identify dominant Regge exchanges and amplitude strengths.

4 / 27

▶ ∢ ≣

High energy $\pi^- p \xrightarrow{} \pi^- \eta' \stackrel{(l)}{\eta'} p$ production $\pi^+ \pi^-$ photoproduction Summary

Kinematics

- $\bullet~$ The 2 \rightarrow 3 reaction (upolarized) is determined by 5 kinematical variables
- In Regge analysis it is customary to choose 5 Lorentz invariants, eg: $s = (q + p_1)^2$, $t_1 = (q - k_\eta)^2$, $t_2 = (p_1 - p_2)^2$, $s_1(k_\eta + k_\pi)^2$, $s_2 = (k_\pi + p_2)^2$.

- COMPASS analysis was performed in the Gottfried-Jackson frame, with θ and ϕ defining the direction of outgoing $\eta^{(\prime)}$
- In this frame cos θ is related to t₁ and φ is related to s₂ (the other variables being s, s₁ and t₂).

Ł. Bibrzycki, Pedagogical University of Krakow

Model vs. experimental data

- The COMPASS experiment operated with a fixed beam momentum of 191 GeV and t₂ was integrated in the region t₂ ∈ [-1.0, -0.1] GeV².
- The invariant mass $(m = \sqrt{s_1})$ and angular dependent intensity was parametrized as:

$$I(m,\Omega)_{COMPASS} = \sum_{\epsilon=\pm 1} \left| \sum_{L,M} f^{\epsilon}_{LM}(m) \Psi^{\epsilon}_{LM}(\Omega) \right|^2,$$

where ϵ is the reflectivity (\approx naturality in high energy limit), kept $\epsilon{=}{+1}$ and

$$\Psi_{LM}^{\epsilon=+1}(\theta,\phi) = \sqrt{2} Y_{LM}(\theta,0) \sin(M\phi)$$
$$f_{LM}^{\epsilon=+1}(m) = \sqrt{I_{LM}} e^{i\phi_{LM}}$$

where the I_{LM} and ϕ_{LM} are the COMPASS experimental partial wave intensities and phaseshifts (determined relative to ϕ_{21}).

Fitting experimental data at large invariant masses

- The easiest approach: fit the model partial waves to experimental ones But:
 - COMPASS analysis was based on partial wave expansion truncated at L = 6 and M = 1, even though it converges slowly for the $\pi \eta^{(\prime)}$ invariant masses above the resonance region,
- The intensity was normalized to the number of events in the mass bin. Therefore:
 - The angular distribution constructed from the truncated partial wave expansion represents total yield.

 $\begin{array}{c} \text{High energy } \pi^- p \xrightarrow{} \pi^- \eta^{(\prime)} p \text{ production} \\ \pi^+ \pi^- \text{ photoproduction} \\ & \text{Summary} \end{array}$

Fitting experimental data at large invariant masses

On the model side

• Model intensities for full amplitudes and partial wave amplitudes truncated at L = 6 differ considerably.

• Fit the mass and angular dependent intensity.

 $\begin{array}{c} \text{High energy } \pi^- \rho \to \pi^- \eta^{(\prime)} \rho \text{ production} \\ \pi^+ \pi^- \text{ photoproduction} \\ \text{Summary} \end{array}$

Fitting experimental data at large invariant masses

• Practically we fit the extended log likelihood (Barlow, Nucl.Instr.Meth. A 297, 1990)

$$\mathcal{L}_{\mathsf{ext}} = \sum_{m_i} \int d\Omega \left[I_{JPAC} \left(m_i, \Omega \right) - I_{COMPASS} \left(m_i, \Omega \right) \log I_{JPAC} \left(m_i, \Omega \right) \right]$$

with model intensity defined as:

$$I_{JPAC}(m, z = \cos \theta, \phi) = q |T|^2 = q |\sum_{i=1}^{6} a_i T^i(m_{\pi\eta}, z, \phi)|^2$$

where $q = \lambda^{1/2} (m^2, m_\pi^2, m_\eta^2) / m$.

Double Regge exchange model

• Leading natural exchanges

Type of diagram	α_1	α_2
$\int (fast n)$	α_{a_2}	α_{P}
	α_{a_2}	α_{f_2}
	α_{f_2}	α_{P}
II (fast π)	α_{f_2}	α_{f_2}
	$\alpha_{I\!\!P}$	α_{P}
	α_{P}	α_{f_2}

Type I - fast η Type II - fast π

- Individual diagram strengths depend on the 6 coupling triples: $G_{a_2\pi\eta}G_{a_2\pi P}G_{PNN}, G_{a_2\pi\eta}G_{a_2\pi f_2}G_{f_2NN}, G_{f_2\pi\pi}G_{f_2\eta P}G_{PNN},$ $G_{f_2\pi\pi}G_{f_2\eta f_2}G_{f_2NN}, G_{P\pi\pi}G_{\eta PP}G_{PNN}, G_{P\pi\pi}G_{f_2\eta P}G_{f_2NN},$ wherein at least one coupling is unknown.
- Therefore we treat diagram strengths as parameters to be fitted.

General form of the amplitude

• Double reggeon exchange (we follow Shimada et al. NPB 142, 1978)

$$T = -K\Gamma(1 - \alpha_1)\Gamma(1 - \alpha_2) \\ \left[(\alpha's)^{\alpha_1 - 1} (\alpha's_2)^{\alpha_2 - \alpha_1} \xi_1 \xi_{21} \hat{V}_1 + (\alpha's)^{\alpha_2 - 1} (\alpha's_1)^{\alpha_1 - \alpha_2} \xi_2 \xi_{12} \hat{V}_2 \right]$$

where
$$\xi_i$$
 and ξ_{ij} signature factors, \hat{V}_1
 $\hat{V}_1(\alpha_1, \alpha_2, \eta) = \frac{\Gamma(\alpha_1 - \alpha_2)}{\Gamma(1 - \alpha_2)} {}_1F_1(1 - \alpha_1, 1 - \alpha_1 + \alpha_2, -\kappa)$
 $\hat{V}_2 = \hat{V}_1(\alpha_1 \leftrightarrow \alpha_2)$ with $\kappa^{-1} \equiv s/(\alpha' s_1 s_2)$

and $K = -4\sqrt{s_1}|q||k_\eta||p_2|\sin heta_2\sin heta\sin\phi$

- Both α_1 and α_2 are of 2⁺⁺ type so only positive signature and naturality.
- Regge trajectories:

$$\alpha_{f_2}(t) = 0.47 + 0.89t \quad \alpha_{a_2}(t) = 0.53 + 0.90t \quad \alpha_{P}(t) = 1.08 + 0.25t$$

Fitting procedure

• Full amplitude $(a_i \text{ to be fitted})$:

$$T(s, s_1, t_2, \cos \theta, \phi; a_i) = K \sum_{i \in I, II} a_i \tilde{T}_i(\alpha_1(t_1), \alpha_2(t_2); s, s_1, t_2, \cos \theta, \phi)$$

Model intensity:

$$I_{JPAC}(m, z = \cos \theta, \phi) = q |T|^2 = q |\sum_{i=1}^{6} a_i T^i(m_{\pi\eta}, z, \phi)|^2$$

Extended log likelihood fit:

$$\mathcal{L}_{\text{ext}} = \sum_{m_i} \int d\Omega \left[I_{JPAC} \left(m_i, \Omega \right) - I_{COMPASS} \left(m_i, \Omega \right) \log I_{JPAC} \left(m_i, \Omega \right) \right]$$

 $\begin{array}{c} \text{High energy } \pi^- p \rightarrow \pi^- \eta^{(\prime)} p \text{ production} \\ \pi^+ \pi^- \text{ photoproduction} \\ & \text{Summary} \end{array}$

Fit results

æ

Minimal set of amplitudes

Fitting the full set of 6 amplitudes is statistically inconclusive.

Parameter values from the fits

- To make the parameter evaluation stable we can fit at most 4 amplitudes.
- We exclude P/f_2 from all fits as it may disrupt the ϕ distribution.

Channel		MIN		MIN+ f/P		MIN + P/P	
		MVR	MCR	MVR	MCR	MVR	MCR
	$\mathcal{L} imes 10^{-4}$	-22.8	-21.9 ± 0.9	-22.7	-22.0 ± 0.9	-22.8	-22.1 ± 0.8
	CapP	0.29	0.42 ± 0.03	0.28	0.40 ± 0.04	0.29	0.36 ± 0.04
	Canfo	3.67	3.3 ± 0.4	3.70	3.4 ± 0.4	3.59	3.8 ± 0.4
$\eta\pi$	CfoP	—	_	-0.20	-0.30 ± 0.05	_	_
	Cfofo	-11.82	-11.0 ± 0.3	-8.99	-6.6 ± 0.7	-10.86	-8.9 ± 0.4
	CPP	—	_	—	_	0.0073	0.0135 ± 0.002
	$\mathcal{L} imes 10^{-4}$	-11.7	-10.9 ± 1.0	-11.7	-11.0 ± 1.0	-11.8	-11.4 ± 1.0
	Ca ₂ P	0.16	0.37 ± 0.07	0.16	0.34 ± 0.05	0.19	0.35 ± 0.05
	Canfo	1.50	0.4 ± 0.6	1.51	0.7 ± 0.5	1.22	0.6 ± 0.5
$\eta'\pi$	CfoP	—	—	-0.21	-0.29 ± 0.03	_	—
	Cfofo	-11.42	-11.0 ± 0.5	-7.73	-5.5 ± 0.7	-9.01	-7.1 ± 0.6
	CPP	—	_	_	_	0.012	0.018 ± 0.002
							TPAC

Forward and backward peaks for $\pi\eta$

Forward and backward peaks for $\pi\eta'$

Forward-backward asymmetry

Define the forward-backward asymmetry as:

$$A(m) \equiv \frac{F(m) - B(m)}{F(m) + B(m)},$$

with $F(m) \equiv \int_0^1 d\cos\theta \, I_{\theta}(m, \cos\theta), \quad B(m) \equiv \int_{-1}^0 d\cos\theta \, I_{\theta}(m, \cos\theta)$

L. Bibrzycki, Pedagogical University of Krakow Photo- and hadron-production of mesons 18/27

Motivation for the $\pi^+\pi^-$ photoproduction study

• Basic interpretation of the $\gamma p \rightarrow \pi^+ \pi^- p$ reaction was formulated in classical SLAC papers (Ballam at al, 197-)

- Diffractive peak in the $d\sigma/dt$ distribution,
- Line shape distorted due to interference with Drell background,
- These properties are grasped by Söding model (assumed diffractive πp scattering)

< D > < A > < B > < B >

Motivation for the $\pi^+\pi^-$ photoproduction study

• Decade ago the topic was revisited by the CLAS collaboration (Battaglieri et al. PRD 80, 2009)

New results:

- Comprehensive analysis of the angular distribution with moments
- First observation of the $f_0(980)$ in the photoproduction

Motivation for the $\pi^+\pi^-$ photoproduction study

Is there anything left to study ? It is !

- Assumption of diffractive πp scattering (Deck (1964), Söding (1966), Pumplin(1970)) is usually not valid,
- No uniform description of partial waves

-varying slopes suggest different production mechanisms.

- Coupled channel effects may be strong particularly in the Sand D-waves.
- Description of polarisation effects still in early stage (see Mathieu, Pilloni et al. PRD 102, 2020).

= ♥) 21 / 27

Unitarity compatible form of the $\gamma p \rightarrow \pi^+ \pi^- p$ amplitude

• Aitchinson and Bowler, J. Phys. G., 3, 1978 had shown that the general form of the unitarity compatible photoproduction amplitude reads:

$$M = M_{diffuse} e^{i\delta_{\pi\pi}} \cos \delta_{\pi\pi} + M_{compact} e^{i\delta_{\pi\pi}} \sin \delta_{\pi\pi}$$

- *M_{diffuse}* and *M_{compact}* denote the production amplitudes where pion pair is produced from the compact or diffuse (asymptotically stretched) source
- In hadron physics a practical infinitely long interaction is achieved with exchanging the particle of smallest mass, which is pion.
- One pion exchange brings us to the Deck model.
- Short range interaction can be modelled by flat energy dependence so we put $M_{compact} = A + Bs_{\pi\pi}$.

 M_{λ}

Deck model - brief recap

Deck amplitude (Pumplin 1970)

$$e_{2\lambda\lambda_{1}} = -e\left[\left(\frac{\epsilon_{\lambda}\cdot k_{2}}{q\cdot k_{2}} - \frac{\epsilon_{\lambda}\cdot (p_{1}+p_{2})}{q\cdot (p_{1}+p_{2})}\right)T_{\lambda_{1}\lambda_{2}}^{+} - \left(\frac{\epsilon_{\lambda}\cdot k_{1}}{q\cdot k_{1}} - \frac{\epsilon_{\lambda}\cdot (p_{1}+p_{2})}{q\cdot (p_{1}+p_{2})}\right)T_{\lambda_{1}\lambda_{2}}^{-}\right]$$

Partial wave projection

$$\mathcal{M}^{\textit{Im}}_{\pi^+\pi^-}(\lambda_2\lambda\lambda_1)=rac{1}{\sqrt{4\pi}}\int d\Omega\;Y^*_{\textit{Im}}(\Omega)\;M_{\lambda_2\lambda\lambda_1},$$

Deck+FSI

$$\mathcal{T}_{\pi^+\pi^-}^{lm}(\lambda_2\,\lambda\,\lambda_1) = (1+i\rho\,t^l)\mathcal{M}_{\pi^+\pi^-}^{lm}(\lambda_2\,\lambda\,\lambda_1)$$

Ł. Bibrzycki, Pedagogical University of Krakow Photo- and hadron-production of mesons 2

3/27

Introduction photoproduction Summarv

Deck model - brief recap

- To describe the πp interaction we use the SAID amplitudes (in ongoing analysis we use amplitudes from Mathieu et al. PRD 92, 2015)
- We use the model of $\pi\pi$ FSI from Bydžovský et al. PRD 94, 2016.
- The only parameters to be fitted are A and B coefficients in the linear approximation of the short range amplitude.
- Deck amplitude is essentially parameter free, thus enables precise determination of the short range contribution.

24/27

A 3 b

Model predictions vs. CLAS data

Work in progress:

- Better description of the short range component, eg. through Regge echange Mathieu et al. PRD 102, 2020
- Prediction of polarized moments of angular distribution for CLAS12 and GlueX (talk by Nicholas Zachariou of CLAS12 earlier today).

 $\begin{array}{l} \text{High energy } \pi^- p \to \pi^- \eta^{(\prime)} p \text{ production} \\ \pi^+ \pi^- \text{ photoproduction} \\ \end{array}$

Summary

- We found that a_2/P , a_2/f_2 , f_2/f_2 and either f_2P or P/P (the data do not show clear preference for either exchange) are required to describe $\pi\eta$ intensity.
- To describe $\pi \eta'$ intensity the a_2/P , a_2/f_2 , f_2/f_2 and P/P exchanges are necessary. Glue rich exchange points toward π_1 hybrid production.
- Quite surprisingly, lower f₂ exchange is necessary to describe COMPASS data,
- The model which combines diffuse source (Deck) and compact source components properly describes the π⁺π⁻ mass distributions at fixed t in S, P and D partial waves and reproduces the dominance of the f₀(980), ρ(770) and f₂(1270) respectively while respecting the 2-particle unitarity in the ππ system.

・ 同 ト ・ ヨ ト ・ ヨ

$$\begin{array}{c} \text{High energy } \pi^- p \rightarrow \pi^- \eta^{(\prime)} p \text{ production} \\ \pi^+ \pi^- \text{ photoproduction} \\ & \text{Summary} \end{array}$$

Thank you for your attention

