Photo- and hadron-production of mesons

Łukasz Bibrzycki
on behalf of the JPAC collaboration

Pedagogical University of Krakow

19th International Conference on Hadron Spectroscopy and Structure, Ciudad de México
26 July - 1 August 2021
I will focus on two topics recently studied by the JPAC collaboration:

1. High energy $\pi^- p \rightarrow \pi^- \eta(\prime) p$ production
2. Photoproduction of resonances in the $\pi^+\pi^-$ system
Motivation of the $\pi^-\eta^{(i)}$ channel study

- $\pi^-\eta^{(i)}$ pairs constitute a golden channel for the searches of hybrid exotics (odd partial waves are exotic)
- COMPASS experiment at CERN (Adolph et al. PLB 740, 2015) observed a strong forward-backward asymmetry in the $\pi^-\eta^{(i)}$ channels (stronger in the $\pi\eta'$ channel)
- The asymmetry is due to odd-even partial wave interference
- The strongest odd wave is the $P-$wave, which in the resonance region can be attributed to the π_1 hybrid
- Relation between the high and low invariant mass region can be described in terms of Finite Energy Sum Rules (special kind of dispersion relations)
Experimental motivation

Objectives:

- Describe the $\pi^- \eta'(\ ')$ production above the resonance region.
- Identify dominant Regge exchanges and amplitude strengths.
Kinematics

- The $2 \rightarrow 3$ reaction (upolarized) is determined by 5 kinematical variables.

- In Regge analysis it is customary to choose 5 Lorentz invariants, eg:

 \[s = (q + p_1)^2, \quad t_1 = (q - k_\eta)^2, \quad t_2 = (p_1 - p_2)^2, \quad s_1(k_\eta + k_\pi)^2, \quad s_2 = (k_\pi + p_2)^2. \]

- COMPASS analysis was performed in the Gottfried-Jackson frame, with θ and ϕ defining the direction of outgoing $\eta^{(')}$.

- In this frame $\cos \theta$ is related to t_1 and ϕ is related to s_2 (the other variables being s, s_1 and t_2).
Model vs. experimental data

- The COMPASS experiment operated with a fixed beam momentum of 191 GeV and t_2 was integrated in the region $t_2 \in [-1.0, -0.1]$ GeV2.

- The invariant mass ($m = \sqrt{s_1}$) and angular dependent intensity was parametrized as:

$$I(m, \Omega)_{\text{COMPASS}} = \left| \sum_{\epsilon = \pm 1} \sum_{L, M} f^{\epsilon}_{LM}(m) \Psi^{\epsilon}_{LM}(\Omega) \right|^2,$$

where ϵ is the reflectivity (\approx naturality in high energy limit), kept $\epsilon = +1$ and

$$\Psi^{\epsilon = +1}_{LM}(\theta, \phi) = \sqrt{2} Y_{LM}(\theta, 0) \sin(M\phi)$$

$$f^{\epsilon = +1}_{LM}(m) = \sqrt{I_{LM}} \ e^{i\phi_{LM}}$$

where the I_{LM} and ϕ_{LM} are the COMPASS experimental partial wave intensities and phaseshifts (determined relative to ϕ_{21}).
Fitting experimental data at large invariant masses

- The easiest approach: fit the model partial waves to experimental ones

But:

- COMPASS analysis was based on partial wave expansion truncated at \(L = 6 \) and \(M = 1 \), even though it converges slowly for the \(\pi \eta^{(')} \) invariant masses above the resonance region,

- The intensity was normalized to the number of events in the mass bin.

Therefore:

- The angular distribution constructed from the truncated partial wave expansion represents total yield.
Fitting experimental data at large invariant masses

On the model side

- Model intensities for full amplitudes and partial wave amplitudes truncated at \(L = 6 \) differ considerably.

Recipe:

- Fit the mass and angular dependent intensity.
Fitting experimental data at large invariant masses

- Practically we fit the extended log likelihood (Barlow, Nucl.Instr.Meth. A 297, 1990)

\[L_{\text{ext}} = \sum_{m_i} \int d\Omega [I_{\text{JPAC}}(m_i, \Omega) - I_{\text{COMPASS}}(m_i, \Omega) \log I_{\text{JPAC}}(m_i, \Omega)] \]

with model intensity defined as:

\[I_{\text{JPAC}}(m, z = \cos \theta, \phi) = q |T|^2 = q \left| \sum_{i=1}^{6} a_i T^i(m_{\pi\eta}, z, \phi) \right|^2 \]

where \[q = \lambda^{1/2}(m^2, m_{\pi}^2, m_{\eta}^2)/m. \]
Double Regge exchange model

- Leading natural exchanges

<table>
<thead>
<tr>
<th>Type of diagram</th>
<th>α_1</th>
<th>α_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>I (fast η)</td>
<td>α_{a_2}</td>
<td>α_{P}</td>
</tr>
<tr>
<td></td>
<td>α_{a_2}</td>
<td>α_{f_2}</td>
</tr>
<tr>
<td>II (fast π)</td>
<td>α_{f_2}</td>
<td>α_{P}</td>
</tr>
<tr>
<td></td>
<td>α_{f_2}</td>
<td>α_{f_2}</td>
</tr>
<tr>
<td></td>
<td>α_{P}</td>
<td>α_{P}</td>
</tr>
<tr>
<td></td>
<td>α_{P}</td>
<td>α_{f_2}</td>
</tr>
</tbody>
</table>

Type I - fast η Type II - fast π

- Individual diagram strengths depend on the 6 coupling triples:
 - $G_{a_2\pi\eta} G_{a_2\pi P} G_{PNN}$,
 - $G_{a_2\pi\eta} G_{a_2\pi f_2} G_{f_2NN}$,
 - $G_{f_2\pi\pi} G_{f_2\eta f_2} G_{f_2NN}$,
 - $G_{P\pi\pi} G_{\eta P P} G_{PNN}$,
 - $G_{P\pi\pi} G_{f_2\eta P} G_{f_2NN}$,

 wherein at least one coupling is unknown.

- Therefore we treat diagram strengths as parameters to be fitted.
General form of the amplitude

- Double reggeon exchange (we follow Shimada et al. NPB 142, 1978)

\[T = -K \Gamma(1 - \alpha_1)\Gamma(1 - \alpha_2) \]

\[\left[(\alpha's)^{\alpha_1-1}(\alpha's_2)^{\alpha_2-\alpha_1}\xi_1\xi_21 \hat{V}_1 + (\alpha's)^{\alpha_2-1}(\alpha's_1)^{\alpha_1-\alpha_2}\xi_2\xi_12 \hat{V}_2 \right] \]

where \(\xi_i \) and \(\xi_{ij} \) signature factors, \(\hat{V}_1 \)

\[\hat{V}_1(\alpha_1, \alpha_2, \eta) = \frac{\Gamma(\alpha_1 - \alpha_2)}{\Gamma(1 - \alpha_2)} \,_1F_1 \left(1 - \alpha_1, 1 - \alpha_1 + \alpha_2, -\kappa\right) \]

\[\hat{V}_2 = \hat{V}_1(\alpha_1 \leftrightarrow \alpha_2) \quad \text{with} \quad \kappa^{-1} = s/(\alpha's_1s_2) \]

and \(K = -4\sqrt{s_1}|q||k_\eta||p_2| \sin \theta_2 \sin \theta \sin \phi \)

- Both \(\alpha_1 \) and \(\alpha_2 \) are of \(2^{++} \) type so only positive signature and naturality.

- Regge trajectories:

\[\alpha_{f_2}(t) = 0.47 + 0.89t \quad \alpha_{a_2}(t) = 0.53 + 0.90t \quad \alpha_P(t) = 1.08 + 0.25t \]
Fitting procedure

1. Full amplitude (a_i to be fitted):

$$T(s, s_1, t_2, \cos \theta, \phi; a_i) = K \sum_{i \in I, II} a_i \tilde{T}_i(\alpha_1(t_1), \alpha_2(t_2); s, s_1, t_2, \cos \theta, \phi)$$

2. Model intensity:

$$I_{JPAC}(m, z = \cos \theta, \phi) = q |T|^2 = q \left| \sum_{i=1}^{6} a_i T^i(m_{\pi \eta}, z, \phi) \right|^2$$

3. Extended log likelihood fit:

$$\mathcal{L}_{ext} = \sum_{m_i} \int d\Omega \left[I_{JPAC}(m_i, \Omega) - I_{COMPASS}(m_i, \Omega) \log I_{JPAC}(m_i, \Omega) \right]$$
Fit results
Minimal set of amplitudes

Fitting the full set of 6 amplitudes is statistically inconclusive.

From the analysis of the forward and backward mass and ϕ distributions we infer that the minimal set of amplitudes should include a_2/\mathcal{P}, a_2/f_2 and f_2/f_2.
Parameter values from the fits

- To make the parameter evaluation stable we can fit at most 4 amplitudes.
- We exclude P/f_2 from all fits as it may disrupt the ϕ distribution.

<table>
<thead>
<tr>
<th>Channel</th>
<th>MIN $\times 10^{-4}$</th>
<th>MVR</th>
<th>MCR</th>
<th>MIN $+f/P$</th>
<th>MVR</th>
<th>MCR</th>
<th>MIN $+P/P$</th>
<th>MVR</th>
<th>MCR</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\eta\pi$</td>
<td>$L \times 10^{-4}$</td>
<td>-22.8</td>
<td>-21.9 ± 0.9</td>
<td>-22.7</td>
<td>-22.0 ± 0.9</td>
<td>-22.8</td>
<td>-22.1 ± 0.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$c_{a2}P$</td>
<td>0.29</td>
<td>0.42 ± 0.03</td>
<td>0.28</td>
<td>0.40 ± 0.04</td>
<td>0.29</td>
<td>0.36 ± 0.04</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$c_{a2}f_2$</td>
<td>3.67</td>
<td>3.3 ± 0.4</td>
<td>3.70</td>
<td>3.4 ± 0.4</td>
<td>3.59</td>
<td>3.8 ± 0.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$c_{f2}P$</td>
<td>—</td>
<td>—</td>
<td>-0.20</td>
<td>-0.30 ± 0.05</td>
<td>—</td>
<td>—</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$c_{f2}f_2$</td>
<td>-11.82</td>
<td>-11.0 ± 0.3</td>
<td>-8.99</td>
<td>-6.6 ± 0.7</td>
<td>-10.86</td>
<td>-8.9 ± 0.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>c_{PP}</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>0.0073</td>
<td>0.0135 ± 0.002</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\eta'\pi$</td>
<td>$L \times 10^{-4}$</td>
<td>-11.7</td>
<td>-10.9 ± 1.0</td>
<td>-11.7</td>
<td>-11.0 ± 1.0</td>
<td>-11.8</td>
<td>-11.4 ± 1.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$c_{a2}P$</td>
<td>0.16</td>
<td>0.37 ± 0.07</td>
<td>0.16</td>
<td>0.34 ± 0.05</td>
<td>0.19</td>
<td>0.35 ± 0.05</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$c_{a2}f_2$</td>
<td>1.50</td>
<td>0.4 ± 0.6</td>
<td>1.51</td>
<td>0.7 ± 0.5</td>
<td>1.22</td>
<td>0.6 ± 0.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$c_{f2}P$</td>
<td>—</td>
<td>—</td>
<td>-0.21</td>
<td>-0.29 ± 0.03</td>
<td>—</td>
<td>—</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$c_{f2}f_2$</td>
<td>-11.42</td>
<td>-11.0 ± 0.5</td>
<td>-7.73</td>
<td>-5.5 ± 0.7</td>
<td>-9.01</td>
<td>-7.1 ± 0.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>c_{PP}</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>0.012</td>
<td>0.018 ± 0.002</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Introduction

High energy $\pi^- p \rightarrow \pi^- \eta(\prime) p$ production

Summary

Forward and backward peaks for $\pi\eta$
Introduction

High energy $\pi^- p \rightarrow \pi^- \eta'$ production

Summary

Forward and backward peaks for $\pi\eta'$

$L. Bibrzycki, Pedagogical University of Krakow

Photo- and hadron-production of mesons
Forward-backward asymmetry

Define the forward-backward asymmetry as:

\[A(m) \equiv \frac{F(m) - B(m)}{F(m) + B(m)}, \]

with

\[F(m) \equiv \int_{0}^{1} d\cos\theta \, I_{\theta}(m, \cos\theta), \quad B(m) \equiv \int_{-1}^{0} d\cos\theta \, I_{\theta}(m, \cos\theta) \]
Motivation for the $\pi^+\pi^-$ photoproduction study

- Basic interpretation of the $\gamma p \rightarrow \pi^+\pi^- p$ reaction was formulated in classical SLAC papers (Ballam at al, 197-)

- Diffractive peak in the $d\sigma/dt$ distribution,

- Line shape distorted due to interference with Drell background,

- These properties are grasped by Söding model (assumed diffractive πp scattering)
Motivation for the $\pi^+\pi^-$ photoproduction study

- Decade ago the topic was revisited by the CLAS collaboration (Battaglieri et al. PRD 80, 2009)

New results:
- Comprehensive analysis of the angular distribution with moments
- First observation of the $f_0(980)$ in the photoproduction
Motivation for the $\pi^+\pi^-$ photoproduction study

Is there anything left to study? It is!

- Assumption of diffractive πp scattering (Deck (1964), Söding (1966), Pumplin(1970)) is usually not valid,
- No uniform description of partial waves varying slopes suggest different production mechanisms.
- Coupled channel effects may be strong particularly in the S– and D–waves.
- Description of polarisation effects still in early stage (see Mathieu, Pilloni et al. PRD 102, 2020).
Introduction

High energy π^- $p \rightarrow \pi^- \eta(\prime) p$ production

π$^+$ π$^-$ photoproduction

Summary

Unitarity compatible form of the $\gamma p \rightarrow \pi^+ \pi^- p$ amplitude

- Aitchinson and Bowler, J. Phys. G., 3, 1978 had shown that the general form of the unitarity compatible photoproduction amplitude reads:

$$M = M_{\text{diffuse}} e^{i\delta_{\pi\pi}} \cos \delta_{\pi\pi} + M_{\text{compact}} e^{i\delta_{\pi\pi}} \sin \delta_{\pi\pi}$$

- M_{diffuse} and M_{compact} denote the production amplitudes where pion pair is produced from the compact or diffuse (asymptotically stretched) source.

- In hadron physics a practical infinitely long interaction is achieved with exchanging the particle of smallest mass, which is pion.
- One pion exchange brings us to the Deck model.
- Short range interaction can be modelled by flat energy dependence so we put $M_{\text{compact}} = A + Bs_{\pi\pi}$.
Deck model - brief recap

Deck amplitude (Pumplin 1970)

\[M_{\lambda_2 \lambda_1} = -e \left[\left(\frac{\epsilon_\lambda \cdot k_2}{q \cdot k_2} - \frac{\epsilon_\lambda \cdot (p_1 + p_2)}{q \cdot (p_1 + p_2)} \right) T_{\lambda_1 \lambda_2}^+ - \left(\frac{\epsilon_\lambda \cdot k_1}{q \cdot k_1} - \frac{\epsilon_\lambda \cdot (p_1 + p_2)}{q \cdot (p_1 + p_2)} \right) T_{\lambda_1 \lambda_2}^- \right] \]

Partial wave projection

\[M^{lm}_{\pi^+ \pi^-} (\lambda_2 \lambda_1) = \frac{1}{\sqrt{4\pi}} \int d\Omega \ Y^*_l(m) M_{\lambda_2 \lambda_1} \]

Deck+FSI

\[\mathcal{T}^{lm}_{\pi^+ \pi^-} (\lambda_2 \lambda_1) = (1 + i \rho \ t^l) M^{lm}_{\pi^+ \pi^-} (\lambda_2 \lambda_1) \]
Deck model - brief recap

- To describe the πp interaction we use the SAID amplitudes (in ongoing analysis we use amplitudes from Mathieu et al. PRD 92, 2015).
- We use the model of $\pi\pi$ FSI from Bydžovský et al. PRD 94, 2016.
- The only parameters to be fitted are A and B coefficients in the linear approximation of the short range amplitude.
- Deck amplitude is essentially parameter free, thus enables precise determination of the short range contribution.
Model predictions vs. CLAS data

Work in progress:

- Better description of the short range component, eg. through Regge exchange Mathieu et al. PRD 102, 2020
- Prediction of polarized moments of angular distribution for CLAS12 and GlueX (talk by Nicholas Zachariou of CLAS12 earlier today).
Summary

- We found that a_2/P, a_2/f_2, f_2/f_2 and either f_2P or P/P (the data do not show clear preference for either exchange) are required to describe $\pi\eta$ intensity.

- To describe $\pi\eta'$ intensity the a_2/P, a_2/f_2, f_2/f_2 and P/P exchanges are necessary. Glue rich exchange points toward π_1 hybrid production.

- Quite surprisingly, lower f_2 exchange is necessary to describe COMPASS data.

- The model which combines diffuse source (Deck) and compact source components properly describes the $\pi^+\pi^-$ mass distributions at fixed t in S, P and D partial waves and reproduces the dominance of the $f_0(980)$, $\rho(770)$ and $f_2(1270)$ respectively while respecting the 2-particle unitarity in the $\pi\pi$ system.
Thank you for your attention