$\begin{array}{l} \mbox{Amplitude Analysis of $\eta π Final States At GlueX} \\ \mbox{HADRON 2021} \end{array}$

Colin Gleason

Union College on Behalf of the GlueX Collaboration

July 28, 2021

UNION COLLEGE

(I) < (II) <

Overview

1. The $\eta\pi$ System

- What we want to measure
- 2. The GlueX Experiment
 - Large acceptance detector
 - Polarized γ beam at 8.5 GeV
- 3. Amplitude Analysis of $\eta\pi$ at GlueX
 - $\gamma p \rightarrow \eta \pi^- \Delta^{++}$
 - $\gamma p \rightarrow \eta \pi^0 p$
- 4. Outlook

< □ > < 同 > < 回 > < Ξ > < Ξ

- The goal of GlueX is to map the spectrum of light hybrid mesons
- The $\eta^{(\prime)}\pi$ system is an ideal place to start
- For orbital angular momentum L=0,1,2,3,.. of the $\eta(')\pi$ system, we gain access to J^{PC}

$$\frac{L}{J^{PC}} \begin{array}{cccc} S & P & D & F & \dots \\ 1^{-+} & 2^{++} & 3^{-+} & \dots \end{array}$$

• $\eta\pi$ in a *P*-wave results in exotic quantum numbers (non $q\bar{q}$)

A D F A B F A B F A B

- The goal of GlueX is to map the spectrum of light hybrid mesons
- The $\eta^{(\prime)}\pi$ system is an ideal place to start
- For orbital angular momentum L = 0, 1, 2, 3, ... of the $\eta(')\pi$ system, we gain access to J^{PC}

- $\eta\pi$ in a *P*-wave results in exotic quantum numbers (non $q\bar{q}$)
- Key questions:
 - 1. What is the nature and interpretation of the π_1 ?
 - -*t* dependence, double Regge exchange
 - 2. How are hybrid states produced?

< ロ > < 同 > < 回 > < 回 >

- The goal of GlueX is to map the spectrum of light hybrid mesons
- The $\eta^{(\prime)}\pi$ system is an ideal place to start
- For orbital angular momentum L = 0, 1, 2, 3, ... of the $\eta(')\pi$ system, we gain access to J^{PC}

$$\frac{L}{J^{PC}} \begin{array}{cccc} S & P & D & F & \dots \\ \hline J^{PC} & 0^{++} & 1^{-+} & 2^{++} & 3^{-+} & \dots \end{array}$$

- $\eta\pi$ in a *P*-wave results in exotic quantum numbers (non $q\bar{q}$)
- Key questions:
 - 1. What is the nature and interpretation of the π_1 ?
 - -*t* dependence, double Regge exchange
 - 2. How are hybrid states produced?

- Build foundation for hybrid searches by studying $\eta\pi$ system
- Focus of this talk is on $a_2(1320) \rightarrow \eta \pi$

A D N A B N A B N A B N

The GlueX Experiment

<ロ> <四> <四> <四> <四> <四</p>

The GlueX Experiment

- Linearly polarized photon beam
- Large acceptance for charged and neutral final state particles
- 120 pb⁻¹ data collected in GlueX Phase-1

< □ > < □ > < □ > < □ > < □ >

$\eta^{(\prime)}\pi$ Systems With GlueX

First stage: study known resonances (e.g. $a_0(980) \rightarrow \eta \pi$, $a_2(1320) \rightarrow \eta \pi$) to build the foundation for hybrid meson searches at GlueX.

- Access to multiple channels:
- 1. $\gamma p \rightarrow \eta \pi^0 p$ • $\eta \rightarrow \gamma \gamma$ • $\eta \rightarrow \pi^+ \pi^- \pi^0$ 2. $\gamma p \rightarrow \eta \pi^- \Delta^{++}$
 - - $\eta \to \gamma \gamma$ • $\eta \to \pi^+ \pi^- \pi^0$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 >

$\eta^{(\prime)}\pi$ Systems With GlueX

First stage: study known resonances (e.g. $a_0(980) \rightarrow \eta \pi$, $a_2(1320) \rightarrow \eta \pi$) to build the foundation for hybrid meson searches at GlueX.

- Access to multiple channels:
- 1. $\gamma p \rightarrow \eta \pi^0 p$ • $\eta \to \gamma \gamma$ • $n \rightarrow \pi^+ \pi^- \pi^0$ 2. $\gamma p \rightarrow \eta \pi^- \Delta^{++}$ • $\eta \to \gamma \gamma$ • $n \rightarrow \pi^+ \pi^- \pi^0$ 3. $\gamma p \rightarrow \eta' \pi^0 p$. $\eta' \to \pi^+ \pi^- \eta, \ \eta \to \gamma \gamma$ 4. $\gamma p \rightarrow n' \pi^- \Delta^{++}$. $n' \to \pi^+ \pi^- n, n \to \gamma \gamma$

< □ > < □ > < □ > < □ > < □ > < □ >

$\eta^{(')}\pi$ Systems With GlueX

First stage: study known resonances (e.g. $a_0(980) \rightarrow \eta \pi$, $a_2(1320) \rightarrow \eta \pi$) to build the foundation for hybrid meson searches at GlueX.

- Access to multiple channels:
- 1. $\gamma p \rightarrow \eta \pi^0 p$ • $\eta \to \gamma \gamma$ • $n \rightarrow \pi^+ \pi^- \pi^0$ 2. $\gamma p \rightarrow \eta \pi^- \Delta^{++}$ • $\eta \to \gamma \gamma$ • $n \rightarrow \pi^+ \pi^- \pi^0$ 3. $\gamma p \rightarrow \eta' \pi^0 p$. $\eta' \to \pi^+ \pi^- \eta, \ \eta \to \gamma \gamma$ 4. $\gamma p \rightarrow n' \pi^- \Delta^{++}$. $\eta' \to \pi^+ \pi^- \eta, \ \eta \to \gamma \gamma$

- Different decay modes should contain same physics
 - \Rightarrow Understand Acceptance
 - \Rightarrow Handling of backgrounds
- Charged and neutral decays are complementary
- Incorporation of beam polarization into Amplitude Analysis

イロト 不得 トイヨト イヨト 二日

 $\gamma p \rightarrow \eta \pi N$

 $0.1 < -t < 0.3 \ {
m GeV}^2$

2

< □ > < □ > < □ > < □ > < □ >

 $\gamma p \rightarrow \eta \pi N$

< □ > < □ > < □ > < □ > < □ >

 $\gamma p \rightarrow \eta \pi N$

イロト イヨト イヨト イヨト

Colin Gleason (Union College)

Angular Distributions in $\eta\pi$

Gottfried-Jackson Frame

Image: A match a ma

Angular Distributions in $\eta\pi$

Gottfried-Jackson Frame

• D_1 (L = 2, m = 1) structure at ≈ 1300 MeV in $\eta \pi^-$ system ($a_2(1320)$)

• • • • • • • • • • • •

• Similar to COMPASS D wave in $\eta\pi^-$

(PLB 740, 303 (2015))

Angular Distributions in $\eta\pi$

Gottfried-Jackson Frame

• D_2 (L = 2, m = 2) structure at \approx 1300 MeV in $\eta \pi^0$ system (a₂(1320))

(日)

• Belle: $\gamma\gamma \rightarrow \eta\pi^0$ sees a_2 produced in D_2 state (PRD 80, 032001 (2009))

Amplitude Analysis on $\gamma p \rightarrow \eta \pi N$ Polarized Amplitudes (PRD 100 (2019) 5, 054017)

- Introduce polarized photoproduction amplitudes to incorporate beam polarization
- System described by $\Omega = \theta, \phi$ (in GJ or Helicity frame) and Φ , the polarization angle

$$\begin{split} I(\Omega,\Phi) &= 2\kappa \sum_{k} \left\{ \left. (1-P_{\gamma}) \left| \sum_{\ell,m} [\ell]_{m;k}^{(-)} \operatorname{Re}[Z_{\ell}^{m}(\Omega,\Phi)] \right|^{2} + (1-P_{\gamma}) \left| \sum_{\ell,m} [\ell]_{m;k}^{(+)} \operatorname{Im}[Z_{\ell}^{m}(\Omega,\Phi)] \right|^{2} + \\ & (1+P_{\gamma}) \left| \sum_{\ell,m} [\ell]_{m;k}^{(+)} \operatorname{Re}[Z_{\ell}^{m}(\Omega,\Phi)] \right|^{2} + (1+P_{\gamma}) \left| \sum_{\ell,m} [\ell]_{m;k}^{(-)} \operatorname{Im}[Z_{\ell}^{m}(\Omega,\Phi)] \right|^{2} \right\} \end{split}$$

- Basis: $Z_l^m(\Omega, \Phi) = Y_l^m(\Omega) e^{-i\Phi}$
- Fit [\ell][±]_{m;k} coefficients to the data
 - ± is the reflectivity
 - $m = -\ell, ..., \ell$

 Reflectivity, ε = ±, corresponds to the naturality, η = P(-1)^J of the exchange particle

• natural parity
$$J^P = 0^+, 1^-, 2^+, \dots$$

イロト 不得 トイラト イラト 一日

• unnatural parity $J^P = 0^-, 1^+, 2^-$

Amplitude Analysis on $\gamma p \rightarrow \eta \pi N$ Polarized Amplitudes (PRD 100 (2019) 5, 054017)

- Introduce polarized photoproduction amplitudes to incorporate beam polarization
- System described by $\Omega = \theta, \phi$ (in GJ or Helicity frame) and Φ , the polarization angle

$$\begin{split} I(\Omega,\Phi) &= 2\kappa \sum_{k} \left\{ \left. (1-P_{\gamma}) \left| \sum_{\ell,m} [\ell]_{m;k}^{(-)} \mathrm{Re}[Z_{\ell}^{m}(\Omega,\Phi)] \right|^{2} + (1-P_{\gamma}) \left| \sum_{\ell,m} [\ell]_{m;k}^{(+)} \mathrm{Im}[Z_{\ell}^{m}(\Omega,\Phi)] \right|^{2} + \\ & \left. (1+P_{\gamma}) \left| \sum_{\ell,m} [\ell]_{m;k}^{(+)} \mathrm{Re}[Z_{\ell}^{m}(\Omega,\Phi)] \right|^{2} + (1+P_{\gamma}) \left| \sum_{\ell,m} [\ell]_{m;k}^{(-)} \mathrm{Im}[Z_{\ell}^{m}(\Omega,\Phi)] \right|^{2} \right\} \end{split}$$

- Basis: $Z_l^m(\Omega, \Phi) = Y_l^m(\Omega) e^{-i\Phi}$
- Fit [\ell][±]_{m;k} coefficients to the data
 - ± is the reflectivity
 - $m = -\ell, ..., \ell$

 Reflectivity, ε = ±, corresponds to the naturality, η = P(-1)^J of the exchange particle

• natural parity
$$J^P = 0^+, 1^-, 2^+, \dots$$

• unnatural parity $J^P = 0^-, 1^+, 2^-$

イロト 不得 トイラト イラト 一日

 Starting waveset (S[±]₀, D[±]_{-1,0,1}, D⁺₂) set chosen from tensor meson decay model from JPAC (PRD 102 (2020))

$$\gamma p
ightarrow \eta \pi^0 p \; S$$
 wave
 $_{0.1 < -t < 0.3 \; {
m GeV}^2}$

• Expect an *S* wave for the $a_0(980)$

Image: A math a math

+ reflectivity dominant

$$\gamma p
ightarrow \eta \pi^0 p \; S$$
 wave $_{0.1 < -t < 0.3 \; {
m GeV}^2}$

- Expect an S wave for the $a_0(980)$
- + reflectivity dominant

- Dominant structure in $a_0(980)$ is the S_0^+ wave \checkmark
- Large S_0^+ under $a_2(1320)$
 - Leakage or acceptance effect?

July 28, 2021

10 / 19

Validation with MC

$$\gamma p
ightarrow \eta \pi^0 p \; S$$
 wave $_{0.1 < -t < 0.3 \; {
m GeV}^2}$

- Expect an S wave for the $a_0(980)$
- + reflectivity dominant

- Dominant structure in $a_0(980)$ is the S_0^+ wave \checkmark
- Large S_0^+ under $a_2(1320)$
 - Leakage or acceptance effect?

July 28, 2021

10 / 19

- Validation with MC
- D wave should be dominated by D_2^+

 $\gamma p \rightarrow \eta \pi^0 p D$ waves $0.1 < -t < 0.3 \text{ GeV}^2$

D₂⁺ is the dominant D wave in the a₂(1320) region at low −t √

- (日)

 $\gamma p \rightarrow \eta \pi^0 p \ D$ waves $0.1 < -t < 0.3 \text{ GeV}^2$

- D₂⁺ is the dominant D wave in the a₂(1320) region at low −t √
- Structures seen around a₂(1700)
 - Will need to identify correct waves and confirm phase motion for hybrid search

 $\gamma p \rightarrow \eta \pi^0 p \ D$ waves $0.1 < -t < 0.3 \text{ GeV}^2$

- D_2^+ is the dominant Dwave in the $a_2(1320)$ region at low $-t \checkmark$
- Structures seen around a₂(1700)
 - Will need to identify correct waves and confirm phase motion for hybrid search
- How does *D* wave evolve as a function of -t?

 $\gamma p \rightarrow \eta \pi^0 p \ D$ waves $0.3 < -t < 0.6 \text{ GeV}^2$

- Shift from dominance of $D_2^+ \rightarrow D_1^+$ in $a_2(1320)$
- D⁻₀ also contributes

Image: A math a math

• Unnatural parity exchange (*h*₁)

 $\gamma p \to \eta \pi^- \Delta^{++}~S$ wave $_{\rm 0.1<-t~<0.3~GeV^2}$

• Expect an *S* wave for the $a_0(980)$

Image: A match a ma

• - reflectivity dominant

э

 $\gamma p \to \eta \pi^- \Delta^{++}~S$ wave $_{\rm 0.1<-\it t<0.3~GeV^2}$

- Expect an *S* wave for the $a_0(980)$
- reflectivity dominant

 Dominant structure in a₀⁻(980) is the S₀⁻ wave √

July 28, 2021

13/19

• Some *S*⁺₀ under *a*₂(1320)

 $\gamma p \to \eta \pi^- \Delta^{++}~S$ wave $_{\rm 0.1<-\it t<0.3~GeV^2}$

- Expect an *S* wave for the $a_0(980)$
- reflectivity dominant

- Dominant structure in a₀⁻(980) is the S₀⁻ wave √
- Some *S*⁺₀ under *a*₂(1320)
- $a_2^-(1320)$ should be dominated by D_1^-

 $\gamma p
ightarrow \eta \pi^- \Delta^{++} D$ waves $0.1 < -t < 0.3 \text{ GeV}^2$

- Dominant structure is $D_1^- \checkmark$
 - unnatural (π) parity exchange expected to dominate at low -t
- D₀⁻ also has a large contribution
- Tail in D_1^- wave related to $a_2(1700)$?

 $\gamma p \rightarrow \eta \pi^- \Delta^{++} D$ waves $0.3 < -t < 0.6 \text{ GeV}^2$

• Shift away from $D_1^-
ightarrow D_1^+$ and D_0^-

A B A B A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A
 A
 A

 Region in -t where we expect a shift from unnatural (π) to natural (ρ) parity exchange

Complementary Studies $\eta\pi^-$, $\eta ightarrow \pi^+\pi^-\pi^0$

Colin Gleason (Union College)

→ ∃ →

・ロト ・日下・ ・日下

Complementary Studies $\eta\pi^-, \eta \rightarrow \pi^+\pi^-\pi^0$

Colin Gleason (Union College)

Complementary Studies $\eta\pi^-, \eta \rightarrow \pi^+\pi^-\pi^0$

- Large data set with access to multiple $\eta\pi$ channels
- Focus on understanding *a*₂ production before moving onto weaker *P* wave
 - At low -t the a_2 signal is dominant in the D_2^+ for $\eta \pi^0$ and D_1^- for $\eta \pi^-$
 - ρ , ω exchange for a_2^0
 - π exchange for a₂⁻

< □ > < 同 > < 回 > < Ξ > < Ξ

- Large data set with access to multiple $\eta\pi$ channels
- Focus on understanding *a*₂ production before moving onto weaker *P* wave
 - At low -t the a_2 signal is dominant in the D_2^+ for $\eta \pi^0$ and D_1^- for $\eta \pi^-$

July 28, 2021

17/19

- ρ , ω exchange for a_2^0
- π exchange for a₂⁻
- D wave structure depends on -t
 - Shift from unnatural (π) to natural (ρ) for $\eta\pi^-$
- Consistent picture at low -t for different η decays

- Large data set with access to multiple $\eta\pi$ channels
- Focus on understanding *a*₂ production before moving onto weaker *P* wave
 - At low -t the a_2 signal is dominant in the D_2^+ for $\eta \pi^0$ and D_1^- for $\eta \pi^-$
 - ρ , ω exchange for a_2^0
 - π exchange for a₂⁻
 - D wave structure depends on -t
 - Shift from unnatural (π) to natural (ρ) for $\eta\pi^-$
 - Consistent picture at low -t for different η decays
 - Will be critical to identify $a_2(1700)$ and understand phase motion

A D F A B F A B F A B

July 28, 2021

17/19

- Large data set with access to multiple $\eta\pi$ channels
- Focus on understanding *a*₂ production before moving onto weaker *P* wave
 - At low -t the a_2 signal is dominant in the D_2^+ for $\eta \pi^0$ and D_1^- for $\eta \pi^-$
 - ρ , ω exchange for a_2^0
 - π exchange for a₂⁻
 - D wave structure depends on -t
 - Shift from unnatural (π) to natural (ρ) for $\eta\pi^-$
 - Consistent picture at low -t for different η decays
 - Will be critical to identify $a_2(1700)$ and understand phase motion
 - Working with theory colleagues to help choose waveset and interpret data

< □ > < □ > < □ > < □ > < □ > < □ >

- Large data set with access to multiple $\eta\pi$ channels
- Focus on understanding *a*₂ production before moving onto weaker *P* wave
 - At low -t the a_2 signal is dominant in the D_2^+ for $\eta \pi^0$ and D_1^- for $\eta \pi^-$
 - ρ , ω exchange for a_2^0
 - π exchange for a₂⁻
 - D wave structure depends on -t
 - Shift from unnatural (π) to natural (
 ho) for $\eta\pi^-$
 - Consistent picture at low -t for different η decays
 - Will be critical to identify $a_2(1700)$ and understand phase motion
 - Working with theory colleagues to help choose waveset and interpret data
- Building the foundation for hybrid searches in $\eta^{(\prime)}\pi$
- GlueX Acknowledgments: gluex.org/thanks

• • • • • • • • • • •

Backup

æ

*ロト *個ト *国ト *国ト

 $\gamma p \rightarrow \eta \pi^- \Delta^{++} D$ waves $0.6 < -t < 1.0 \text{ GeV}^2$

- D_2^+ is the dominant wave at high -t
 - Region in -t where we expect natural (ρ) parity exchange to dominate
- D⁻₋₁ also contributes

A B A B A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A
 A
 A