Meson Spectroscopy program at CLAS12

(CLAS collaboration)

Outline

- Why spectroscopy of mesons?
- Jefferson Lab
- CLAS12 and the Forward Tagger
- MesonEX @ CLAS12

Why Meson Spectroscopy?

QCD well understood in the high-energy, perturbative

regime

- Understanding the dof in the non-perturbative regime is challenging
 - What is the role of gluons?
 - What is the origin of quark confinement?
- Measuring the spectrum of hadrons allows a comprehensive understanding of the strong force

Why Meson Spectroscopy?

- Mesons \rightarrow Simplest bound system to study
- QCD does not prohibit the existence of unconventional meson states -- hybrids (qqg), me tetraquarks (qqqq), and glueballs.

 Identification can be difficult → mix with ordinary states

• Unique signature: Exotic quantum numbers

What has been done already?

- Various approaches including hadron production, NN annihilation, ...
- Photoproduction Limited due to low-quality/luminosity experiments
 - Exotic J^{PC} more likely to be produced by S=1 probe
 - Polarised beams can simplify extraction of Partial Waves
 - Production rates for exotics comparable to regular mesons

Thomas Jefferson Laboratory

- CEBAF Accelerator
- Recently upgraded to 12 GeV electron beams
 - 4 experimental halls
 - Racetrack accelerator (LINACs) allowing multi-pass beam acceleration
 - High-quality beams ~100% duty cycle
 - Highly polarized beams ~80%
 - High currents up to 100 μ A (Halls A and C)

Hadron2021 -- Nicholas Zachariou

CEBAF Large Acceptance Spectrometer

- CLAS12 provides an efficient detection of charge and neutral tracks
 - Based on solenoid (CD) and toroidal (FD) magnetic fields
 - Excellent for multi-particle final states
 - Excellent PID: TOF, Cerenkov, RICH (charged), calorimeter (neutral)

Nominal Luminosity: $L=10^{35} \text{ cm}^{-2} \text{ s}^{-1}$ Momentum resolution (FD): dp/p < 1% Θ resolution= 1 mrad Φ resolution= 1 mrad/sin Θ Timing resolution TOF = 100 ps

 π/K separation: 4 σ separation up to 2.8 GeV K/p separation: 4 σ separation up to 4.8 GeV π/p separation: 4 σ separation up to 5.4 GeV

The Forward Tagger

- Installed July 2017
- Composed of :
 - Tracker
 - Scintillation Hodoscope
 - Calorimeter

PARAMETER	DESIGN VALUE
FT-Cal	
Calorimeter type	PbWO4, homogeneous
Crystal number and size	332, 15x15x200 mm ³
Readout sensors	Hamamatsu LAAPD s8664-1010
Working Temperature	$T = (0 - 18) \circ C (\Delta T \le 0.1 \circ C)$
FT-Trck	
Tracking technology	two double-layers, bi-face bulk MicroMega
Detector type	Strips, 3392 channels
Spatial resolution	ΔX, ΔY ≤ 150 μm
FT-Hodo	
Detector technology	2 layers of plastic scintillator tiles
Tiles number and size	74 (30x30x15 mm ³) + 42 (15x15x7 mm ³)
Readout sensors	Hamamatsu SiPM S10362-100
Expected Performance	VALUE
Azimuthal angular coverage	2.5° to 4.5°
EM shower energy range	E _{max} –E _{min} = (0.5 – 8.0) GeV
Energy resolution	$σ_{\rm E}$ /E ≤ 2%/VE(GeV) $⊕$ 1%
Angular resolution	$σ_ϑ/ϑ$ ≤ 1.5 %, $σ_φ$ ≤ 2°
Time resolution	≤300 ps

MesonX Experiment

- Quasi-real photoproduction on proton target
 - Detail study of light-quark meson spectrum (1.0 3.0 GeV)
 - Determine masses and properties of rare qq states
 - Search and identify exotic mesons

- Data collection started in 2018
- ~50% of the allocated beam time already carried out
- $\,\circ\,\,$ Dedicated trigger coincidence on FT EM shower + 2 charged

hadrons in CLAS12

Forward Tagger	
E'	0.5-4.5 GeV
ν	7-10.5 GeV
θ	2.5-4.5 deg
Q ²	0.007 – 0.3 GeV ²
W	3.6-4.5 GeV
Photon Flux	$5 \times 10^7 \gamma/s @ L_e = 10^{35}$

Meson Experiment

- First look at FT data
- Energy Calibrations on π^0 2-photon decay
- Timing calibration exceed specifications (300 ps)
- Energy resolution ~ 3%@2GeV still +1% higher than specs

Meson Experiment – First analysis

 $ec{\gamma} p o p \pi^0$

- Inconsistent results between GlueX and SLAC
- CLAS12 Reconstruction of reaction from π^0 and e' in FT
- Straightforward determination of Σ and $d\sigma/dt$
- Results expected early 2022

Meson Experiment – Benchmark reaction $\vec{\gamma}p \rightarrow p\pi^+\pi^-$

- Fully exclusive reaction
- Determination of moments
 - Phys. Rev. D 100, 054017
- Moments fit using 2pi decay angles as a function of 2pi mass
- Technique successfully applied to CLAS6 data:
 - PHYSICAL REVIEW D 80, 072005 (2009)
 - PHYSICAL REVIEW D 98, 052009 (2018)

14

Meson Experiment $\vec{\gamma} p \rightarrow p K^+ K^-$

Analysis procedure is identical to 2 pion channel

Exclusivity of the reaction allows clean(er) signal

Rich mass spectrum observed

Next steps: Study of angular distribution in 2K system

Meson Experiment – Exotic search $ec{\gamma} p ightarrow \pi^+ \pi^+ \pi^- n$ Key reaction for exotic search ٠ Missing-mass technique with 3 pion ID Background significant but contributions understood Fit components for Pi3MissMass GJ decay angle (cosTh) Signal Weighted Invariant Mass 12000 GJ decay angle (cosTh 10000 8000 6000 -0. 4000 -0 -0.6 2000 հավավավավա 0.7 0.75 0.8 0.85 0.9 0.95 1 1.05 1.1 1.15 1.2 0.8 1.2 1.8 2 Pip1, Pim1 mass 1.6 1.4 1.6 2.8 1.2 1.8 Pi3MissMass Three pion Invariant mass

First fits to 3 body final state via 4 decay angles have been done on small data set

Summary

- Recent developments in accelerator and detector advancements allow the detailed study of meson spectrum via photoproduction experiments
- MesonX aims at searching for exotic mesons and studying in detail the light-quark meson spectrum up to masses of 2.5 GeV.
- Data analysis well underway (50% of statistics)
- First results expected in 2022