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Motivation

* Measurement of bound states, such as deuteron (d),
helium-3 (®He), tritium (*H), helium-4 (*‘He),
hypertritium (iH) and their antiparticles are going on
in high energy collisions.

x Binding energies of bound-states are typically much

smaller than the temperature realized in such collisions.

How they are produced in such a hot environment?
» Hadrons in thermal model:
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The +(—) sign corresponds to fermions (bosons).
How to include BS in a thermal model?
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* Is the weight factor 1?
x Is interaction important?




Scattering amplitudes
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* 8,t and u are Mandelstam variables
A(s,t,u) in terms of partial waves:

A(s,t,u) = A(s,0) = Y (20 + 1)A;(s)Py(cos0)
1=0
* Py(&) with £ = cos 6 are the Legendre polynomials:
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[-th waves amplitude:
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Amplitudes and cross-section at the tree-level

Amplitude: ><

iA(s,t,u) = —iA = A(s,t,u) =A(s,0) = =\
s-wave (I = 0) amplitude:
1t
AO(S) = Q dEA(S’e) :A(S,Q) =-A,
-1
Amplitudes for [ > 0:  A;_;9 (s) =0

Total cross-section:
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The factor 1/2 refers to identical particles.
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Phase shifts
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k=./%7— m?2 is the modulus of the three-momentum of one
of the ingoing (or outgoing) particles
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* The asymptotic values dy(s — oco) do not tend to a
multiple of 7 = unitarization is required.
* We can trust the results only when §; is small.



Unitarization

We introduce the two-particle loop (X(s)) of the field :
requirement (optical theorem): Im X(s) above threshold

s _ 2
I(s) = Imx(s) — V2™

= ET\/gfor \/g > 2m.
Y(s) for complex values of the variable s reads
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where the subtraction C guarantees convergence. Here, we
make the choice (s — 0) = 0, hence
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Tree level amplitude:

iA(s,t,u) = —iA = A(s,t,u) =A(s,0) = -\

Unitarization (one-loop resumed approach):

s) +AZ(s)5(s) + A3 (s)%(s) + Az (s)

»3(s) + ...
_ Ak( )
1—Au(5)(s)
A (s) =4, (s) = ()1
s- Wave amphtude at tree-level
Ag(s) = 3 [T deA(s,0) = A(s,0) = —A
-
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s-wave unitarized amplitude: Ag (s) T
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Scattering length
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* a(l)] SL 0 for A >0 (repulsion)

* a(l)]’SL > 0 for A € (\. = —1672,0) (attraction)

* a([)]’SL < 0 for A\ < A, (repulsion sets in again) —

bound-state below threshold emerges



Unitarized s-wave phase shift
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(53] is negative when A > 0 (blue lines)
&7 is positive when A\, < A < 0 (see A = —100)
(53] becomes negative again when A < A,
do(s — oo) goes to a multiple of
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Bound state formation

—-A 1

Ay() = 17 AS(s) A1 5(s)

for bound state: A{(s)™1=|-A"1 - Z(s)] =0

* Yisreal for s < 4m?
At threshold: X(s = 4m?) = Spax =

= |\ = —1672

Bound state is present if \ < A, = —1672.

Mg\ = X;) = 2m ,
MB()‘ — —OO) =0.
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Vs = Mg for A\ = —200 = bound state
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x Derivative of the phase shift shows a delta function near



Thermodynamic properties
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where x = /5.
In our specific case, only the s-wave contribution is nonzero:

galnt T/ dx 1d60 )/ln [l—e_ﬂ\/’m] .
k

* P,y.int depends on ddy/dx

* P,y.int > 0 when derivative of the phase shift is positive
= Attractive interaction
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x For \ > 0, P(%_int < 0 = Repulsive interaction

* A <A<O Pg¢>—int
* When A < A, Pé{b—int becomes negative. However, bound

state is formed (Pg > 0).

Pg=—0\—-\NT / In [1 — e VR M
k

The total pressure (in the presence of a bound state):

> (0 = Attractive interaction

PY, = Py + P, gree + PU_ ., (unitarized, for any \).
» Total pressure (PY,) is continuous



Temperature dependence of pressure
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* At \=0,PY, = P, fe. At high T it goes to the mass less
limit: P, froe/Tih_o = 72/90

* For A\ = =200 (< ).), the bound state is present and, Py,
is larger than that of non-interacting particle.

* For A = 200, PV, is smaller than that of non-interacting

particle because of repulsion.
» PU./T* saturates at high T in all the cases.
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* At small temperature ( = 1 for A = \.. P
* Athigh T, Pg@_im <0O0and (<1

U
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Summary

x Discussed how to include bound states in a thermal gas
in the context of QFT.

* A scalar QFT with ¢* interacting is considered.

* Analysis is based on a unitarized one-loop resumed
approach.

* A bound state of the p-¢ type is formed when the ) is
negative and its modulus is larger than a certain critical
value.

* Contribution of this bound state to the pressure of the
thermal gas is calculated using the S-matrix formalism.

x Total pressure varies continuously with .
*x ¢ = 1 at low T but less than 1 at high T'.
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Let us check the imaginary part of X(s)
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Phase shifts comparison
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* 55 is always positive (negative) when A < 0 (A > 0)

* 6 is positive (negative) when A\ < A <0 (A > 0 or
A< A)

* 0p(s — o0) goes to a multiple of 7



Pressure at the tree-level
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* Interaction is repulsive when A > 0. Attractive
othersiwe.

* At A =0, P ,_in; = 0. At high T total pressure goes to
the mass less limit: P/T% _, = n2/90

* No bound state formation.



