Recent progress from the lattice on the QCD phase diagram

Jana N. Guenther Wuppertal-Budapest collaboration

July 27th 2021

$$\mathcal{L}_{QCD} = -\frac{1}{4} F^a_{\mu\nu} F^{a,\mu\nu} + \overline{\psi} \left(i\gamma_\mu D^\mu - m \right) \psi$$

Equation of state

$$\mathcal{L}_{QCD} = -\frac{1}{4} F^{a}_{\mu\nu} F^{a,\mu\nu} + \overline{\psi} \left(i\gamma_{\mu} D^{\mu} - m \right) \psi$$

$$\mathcal{L}_{QCD} = -\frac{1}{4} F^{a}_{\mu\nu} F^{a,\mu\nu} + \overline{\psi} \left(i\gamma_{\mu} D^{\mu} - m \right) \psi$$

Fluctuations

Equation of state

$$\mathcal{L}_{QCD} = -\frac{1}{4} F^a_{\mu\nu} F^{a,\mu\nu} + \overline{\psi} \left(i\gamma_\mu D^\mu - m \right) \psi$$

The path integral quantization: from M to QM to QFT

The path integral quantization: from M to QM to QFT

The path integral quantization: from M to QM to QFT

 $\int \mathcal{D}\phi(x)e^{\mathrm{i}\int\,\mathrm{d}^4x\mathcal{L}}$

The work flow

Why aren't we finished yet?

- Simulations take a lot of computer time
- Not everything can be calculated directly. For example:
 - Only thermal equilibrium
 - Only simulations at $\mu_B = 0 \Rightarrow \langle n_B \rangle = 0$ heavy ion collision experiments

1000 configurations on a $64^3\times 16$ lattice cost about 1 million core hours

Equation of state

The (T, μ_B) -phase diagram of QCD

Equation of state

The (T, μ_B)-phase diagram of QCD

T

 μ_B

Fluctuations

Equation of state

The (T, μ_B)-phase diagram of QCD

′**/** ′

 μ_B

Fluctuations

Equation of state

The (T, μ_B) -phase diagram of QCD

Fluctuations

Equation of state

The (T, μ_B) -phase diagram of QCD

Fluctuations

Equation of state

The (T, μ_B) -phase diagram of QCD

Fluctuations

Equation of state

The (T, μ_B) -phase diagram of QCD

Fluctuations

Equation of state

The (T, μ_B) -phase diagram of QCD

Fluctuations

Equation of state

The (T, μ_B) -phase diagram of QCD

Fluctuations

Equation of state

The (T, μ_B) -phase diagram of QCD

Fluctuations

Equation of state

The (T, μ_B) -phase diagram of QCD

Dealing with the sign problem

- Reweighting techniques
- Canonical ensemble
- Lefshetz Thimble
- Density of state methods
- Dual variables
- Complex Langevin
- . . .

Dealing with the sign problem

- Reweighting techniques
- Canonical ensemble
- Lefshetz Thimble
- Density of state methods
- Dual variables
- Complex Langevin
- . . .

[Sexty:2019vqx]

Dealing with the sign problem

- Reweighting techniques
- Canonical ensemble
- Lefshetz Thimble
- Density of state methods
- Dual variables
- Complex Langevin
- . . .

- (Taylor) expansion
- Imaginary μ

Analytic continuation from imaginary chemical potential

Common technique:

- [deForcrand:2002hgr]
- [Bonati:2015bha]
- [Cea:2015cya]
- [DElia:2016jqh]
- Bonati:2018nut]
- [Borsanyi:2018grb]
- [Borsanyi:2020fev]
- [Bellwied:2021nrt]

• . . .

Expansion from $\mu = 0$

Taylor expansion

LHC

$$\frac{p}{T^4} = \sum_{j=0}^{\infty} \sum_{k=0}^{\infty} \frac{1}{j!k!} \chi_{jk}^{BS} \hat{\mu}_B^j \hat{\mu}_S^k$$

with $\hat{\mu} = rac{\mu}{T}$

- rapid convergence in Stephan-Boltzmann ($T = \infty$) limit
- expansion coefficients are lattice observables

Expansion from $\mu = 0$

Taylor expansion

 $\frac{p}{T^4} = \sum_{j=0}^{\infty} \sum_{k=0}^{\infty} \frac{1}{j!k!} \chi_{jk}^{BS} \hat{\mu}_B^j \hat{\mu}_S^k$

with
$$\hat{\mu}=\frac{\mu}{T}$$

- rapid convergence in Stephan-Boltzmann ($T = \infty$) limit
- expansion coefficients are lattice observables

Fugacity expansion/sector method

$$rac{p}{T^4} = \sum_{j=0}^\infty \sum_{k=0}^\infty P^{BS}_{jk} \cosh(j\hat{\mu}_B - k\hat{\mu}_S)$$

with
$$\hat{\mu} = rac{\mu}{T}$$

- rapid convergence in hadronic phase
- information about particle content

Expansion from $\mu = 0$

Taylor expansion

 $\frac{p}{T^4} = \sum_{j=0}^{\infty} \sum_{k=0}^{\infty} \frac{1}{j!k!} \chi_{jk}^{BS} \hat{\mu}_B^j \hat{\mu}_S^k$

with
$$\hat{\mu}=\frac{\mu}{T}$$

- rapid convergence in Stephan-Boltzmann ($T = \infty$) limit
- expansion coefficients are lattice observables

Fugacity expansion/sector method

$$rac{p}{T^4} = \sum_{j=0}^\infty \sum_{k=0}^\infty P^{BS}_{jk} \cosh(j\hat{\mu}_B - k\hat{\mu}_S)$$

with
$$\hat{\mu} = rac{\mu}{T}$$

- rapid convergence in hadronic phase
- information about particle content

 $\bullet\,$ often the expansion is done for a specific choice of $\mu_{\mathcal{S}}$

The transition temperature

Extrapolation of the transition temperature

[Bazavov:2018mes] Results from the Taylor expansion method HISQ quarks

Continuum limit from $N_t = 6, 8, 12$

[Borsanyi:2020fev] Results from the imaginary potential method staggered quarks

Continuum limit from $N_t = 10, 12, 16$

chemical freezeout: abundancies of hadrons are fixed (frozen-in) kinetic freezeout: momentum distributions are fixed

Equation of state

In Fluctuations

Fluctuations on the lattice

$$\chi_{i,j,k}^{B,Q,S} = \frac{\partial^{i+j+k} (p/T^4)}{(\partial \hat{\mu}_B)^i (\partial \hat{\mu}_Q)^j (\partial \hat{\mu}_S)^k} , \ \hat{\mu}_i = \frac{\mu}{T}$$

- can be calculated on the lattice
- can be compared to various models
- can be compared to experiment
- can be used as building blocks for various observables

[Borsanyi:2018grb]

Low order fluctuations with high precision

- [Bellwied:2021nrt]
- continuum estimate from $N_t = 8, 10, 12$
- stout smeared staggered
- contributions vom $N \Lambda$, $N \Sigma$ scattering
- negative contribution in the Fugacity expansion indicate repulsive interaction that cannot be described with more resonances

- Bollweg:2021vqf]
- HISQ
- New continuum extrapolated results $(N_t = 6, 8, 12, 16)$ allow for detailed comparisons with various models
- Quark model states are needed for HRG

Observables

Cumulants of the net baryon number distributions:

27

0.8

Comparison with heavy ion collision experiments

- Bazavov:2020bjn]
- Taylor method
- HISQ

- Bellwied:2021nrt]
- estimate from
- stout smeared

- 2d-extrapolation in μ_B and μ_S
- Fugacity expansion and imaginary chemical potential

2d-Extrapolation: [Bellwied:2021nrt]

144 ensembles for each temperature and lattice Example at T = 155 MeV:

$$P(T, \hat{\mu}_B^I, \hat{\mu}_S^I) = \sum_{j,k} P_{jk}^{BS}(T) \cos(j\hat{\mu}_B^I - k\hat{\mu}_S^I) .$$

-S = -1 0 1 2 3: B = 0 1 2 3

A surface is fitted on the baryon and strangeness densities, as well as on their susceptibilities.

Equation of state

Trouble with the equation of state

Equation of state

Trouble with the equation of state

 $\begin{array}{l} [\mathsf{Bazavov:2017dus}]\\ \mathsf{Taylor method}\\ N_t = 6, 8, 12, (16) \ (\mathsf{2nd Order})\\ N_t = 6, 8 \ (\mathsf{4th and 6th Order}) \end{array}$

220 240 Equation of state

Trouble with the equation of state

Equation of state

Trouble with the equation of state

- extrapolation at fixed *T* cross the transition line
- bad convergence with low order Taylor coefficients

Equation of state

Find a different extrapolation scheme for extrapolating to higher μ_B .

• [Borsanyi:2021sxv]

• $N_t = 10, 12, 16$

Summary

155 MeV

T

 $^{2/\chi^B_{B}}$ or C^{n+}_{n+} $^{2/\chi^B_{B}}$ or C^{n+}_{n+}

² ^B ^B 0.2 ►

The sign problem

The QCD partition function:

$$egin{aligned} Z(V, \mathcal{T}, \mu) &= \int \mathcal{D}U \mathcal{D}\psi \mathcal{D}ar{\psi} \; e^{-S_F(U, \psi, ar{\psi}) - eta S_G(U)} \ &= \int \mathcal{D}U \; ext{det} \; M(U) e^{-eta S_G(U)} \end{aligned}$$

- For Monte Carlo simulations det $M(U)e^{-\beta S_G(U)}$ is interpreted as Boltzmann weight
- If there is particle-antiparticle-symmetry det M(U) is real
- If $\mu^2 > 0 \det M(U)$ is complex

The sign problem

$$\int_{-\infty}^{\infty} \mathrm{d}x \ (100 - x^2) \frac{e^{-\frac{1}{2}x^2}}{\sqrt{2\pi}} \approx \int_{-100}^{100} \mathrm{d}x \ (100 - x^2) \frac{e^{-\frac{1}{2}x^2}}{\sqrt{2\pi}} = \sum_{i=1}^{N} (100 - x_i^2) \frac{e^{-\frac{1}{2}x_i^2}}{\sqrt{2\pi}} \cdot \frac{200}{N}$$

The x_i are drawn from a uniform distribution in the interval [-100, 100]

Equation of state

Importance sampling

$$\int_{-\infty}^{\infty} \mathrm{d}x \ (100 - x^2) \frac{e^{-\frac{1}{2}x^2}}{\sqrt{2\pi}} = \sum_{i=1}^{N} (100 - x_i^2) \cdot \frac{1}{N}$$

The x_i are drawn from a normal distribution

The sign problem

