

HADRON 2021, 27/07/2021, Virtual Ricardo Vazquez Gomez (UB) on behalf of the LHCb Collaboration

JNIVERSITAT DE BARCELONA

- Single-arm forward spectrometer. Fully instrumented in the * region $2 < \eta < 5$.
- Tracking system with resolution $\delta p/p=0.5-1\%$ from 2 to 200 * GeV.
- Excellent particle identification. *
 - Hadron: ~95% efficiency ($K \rightarrow K$) with O(5%) misID ($\pi \rightarrow K$).
 - Muon: ~97% efficiency ($\mu \rightarrow \mu$) with 1-3% misID ($\pi \rightarrow \mu$). *
- Excellent vertex resolution $(15 + 29/p_T[GeV])\mu m$. **
- Good calorimeter resolution $\Delta E/E = 1\% + 10\% / \sqrt{E[\text{GeV}]}$. *
- HeRSCheL detector: veto background in ultra peripheral * collisions.
- Flexible trigger, configured to measure very low p_T.

JINST 3 (2008) S08005 IJMPA 30 (2015) 1530022

Heavy Ions at LHCb

Only detector at LHC fully instrumented in * the forward region.

arXiv:2105.06148v1

Backward $\eta < 0$

Different energies of Pb and p beams: boost of nucleon-nucleon cms system $\eta = \eta_{\text{lab}} - 0.465$

Today's results

* Prompt-charged particle production in *pp* at 13 TeV. arXiv:2107.10090 *

* Prompt charged particle production in *p*Pb and *pp* at 5 TeV. LHCb-PAPER-2021-015 (in preparation) *

Motivation of the analyses

- Goal: measure inclusive prompt charged particle spectra in pp and pPb collisions with respect to (η , p_T). *
- Motivation: *
 - Description of hadron production in *pp* and *pA*.
 - rays [arXiv:2105.06148v1].
 - MC generator predictions disagree at LHCb acceptance. Important for underlying event simulation. **
 - - Measure of Cold Nuclear Matter effects as baseline for PbPb collisions. **
 - Description of shadowing/antishadowing in nuclear PDFs. **
 - Saturation effects.
 - Cronin effects.

Impact in cosmic-ray physics. Could explain observed excess in muons from hadronic cascades of high-energy cosmic

Phenomenology of HI collisions. Measure $R_{pPb}(\eta, p_T) = \frac{1}{A} \frac{d^2 \sigma_{pPb}(\eta, p_T)/d\eta dp_T}{d^2 \sigma_{pp}(\eta, p_T)/d\eta dp_T}$

LHCb (x,Q^2) coverage

- LHCb has access to unique Bjorken-*x* range: *
 - Q²: exchange momentum between interacting partons. **
 - *x*: momentum fraction from Pb parton: *
 - * forward, $10^{-6} \le x \le 10^{-4}$
 - backward, $10^{-3} \leq x \leq 10^{-1}$ *

- Possible access to saturation region in perturbative scale $p_T > 1.5$ GeV/c. *
- * Backward acceptance overlaps with (x,Q^2) at central BRAHMS (dAu) and backward PHENIX (Aup).

PRD 59 (1998) 014017 PRL 100 (2008) 022303

Prompt charged particle production in pp at 13 TeV

$$\frac{d^2\sigma}{dp_{\rm T}d\eta} = \frac{1}{\mathscr{L}} \frac{n}{\Delta p_{\rm T}\Delta \eta} \prod_{\rm c}^{n_{\rm c}}$$

- First double-differential forward charged particle spectrum at 13 TeV. *
 - Measured in range $0.08 < p_T < 10$ GeV. Unbiased trigger. Separated by charge.
 - Prompt charged particles: charged hadrons and leptons directly from collision or from decays of particles with $\tau < 30 \, ps.$
- Crucial measurement for (soft-)QCD, astroparticle physics and generator tuning. *
- Loose candidate selection with high efficiency. **
- Total efficiency from simulation corrected by data. *
- Background subtracted using simulation corrected by data; e.g. fake tracks, tracks from material interactions.

arXiv:2107.10090

 $e_{\text{cand}} = \epsilon n + \sum n_{\text{bkg},i}$: prompt charged particle yield ϵ : detection and selection efficiency

Prompt charged particle production in pp at 13 TeV

arXiv:2107.10090

Uncertainty dominated by systematics. Huge variation across bins.

Prompt charged particle production in pPb and pp at 5 TeV

$$\frac{d^2\sigma}{dp_{\rm T}d\eta} = \frac{1}{\mathscr{L}} \frac{N^{ch}(\eta, p_{\rm T})}{\Delta p_{\rm T}\Delta \eta}$$

- * $\tau < 30 \, ps.$
- Datasets at 5 TeV: *
 - * *pp* cover $2 < \eta < 4.8$
 - * *pPb* (*Pbp*) cover $1.5 < \eta < 4.3(-2.5 < \eta < -5.2)$
 - * Measure R_{pPb} in common η range.

LHCb-PAPER-2021-015 (in preparation)

N^{ch} : prompt charged particle yield $\Delta \eta, \Delta p_T$: bin size \mathscr{L} : integrated luminosity of the dataset

Prompt charged particles: charged hadrons and leptons directly from collision or from decays of particles with

Measured from reconstructed tracks, in range p > 2 GeV/c and $0.2 < p_T < 8 \text{ GeV/c}$. Unbiased trigger.

Reconstructed tracks need to be corrected from background and reconstruction and selection efficiencies.

Differential cross-sections results

Measured in *pp*, *p*Pb and Pbp.

Compatible with the result at 13TeV.

Measurement dominated by systematic uncertainties. Most (η , p_T) bins with uncertainty <3% in cross-section and <5% in R_{pPb} .

Uncertainty source	p Pb [%]	p Pb [%]	$pp \ [\%]$
	(forward)	(backward)	
Track-finding efficiency	1.5 - 5.0	1.5 - 5.0	1.6 - 5.
Detector occupancy	0.0 - 2.8	0.6 - 2.9	0.1 - 1
Particle composition	0.4 - 4.1	0.4 - 4.6	0.3 - 2.
Selection efficiency	0.7 - 2.2	0.7 - 3.0	1.0 - 1.0
Purity	0.1 - 1.8	$0.1 \ -11.7$	0.1 - 5
Truth-matching	0.0 - 0.1	0.0 - 0.1	0.1 - 0.1
Luminosity	2.3	2.5	2.0
Statistical uncertainty	0.0 - 0.6	0.0 - 1.0	0.0 - 1
Total (in $d^2\sigma/d\eta dp_T$)	3.0 - 6.7	3.3 - 14.5	2.8 - 8
Total (in R_{pPb})	4.2 - 9.2	4.4 - 16.9	

ΗŢΗ

⊢⊈⊣

Previous measurements of $R_{pA,dA}$

Also measurements from ATLAS [PRL 763 (2016) 313] and PHENIX *R*_{dAu} [PRL 91 (2003) 072303]

CMS *R*_{*p*Pb} (2018) |η|<1.0 [JHEP 04 (2017) 039]

ALICE *R*_{*p*Pb} (2020) 0.3<η<1.3 [JHEP 1811 (2018) 013]

Nuclear modification factor R_{pPb}

- * Nuclear modification factor $R_{pPb}(\eta, p_{T}) = \frac{1}{A} \frac{d^{2}\sigma_{pPb}(\eta, p_{T})/d\eta dp_{T}}{d^{2}\sigma_{pp}(\eta, p_{T})/d\eta dp_{T}}, A=208.$
- Strong suppression at forward η.
- * Enhancement at backward for $p_T > 1.5 \text{ GeV/c}$ as observed by PHENIX in Aup.
 - * Models:
 - * EPPS16+DDS: I. Helenius et al.
 [JHEP09(2014)138].
 - CGC (Color Glass Condensate): T. Lappi et al.
 [PRD88(2013)114020].
 - **pQCD calculation with MS**: Z.B. Kang et al.
 [PRD88(2013)054010, PLB740(2015)23].

LHCb-PAPER-2021-015 (in preparation)

Comparison with ALICE and CMS

- *
- Enhancement in backward regions starts at different p_T for different η . *

LHCb-PAPER-2021-015 (in preparation)

Continuous trend from forward to backward η including ALICE results [JHEP 1811 (2018) 013].

Comparison with ALICE and CMS

*
$$Q_{exp}^2$$
 and x_{exp} are proxies for Q^2
and x .

*
$$Q_{exp}^2 \equiv m^2 + p_T^2$$
, with
 $m = 256 \,\text{MeV}$

$$* x_{exp} \equiv \frac{Q_{exp}^2}{\sqrt{s_{NN}}} e^{-\eta}$$

- * Indirect study of the evolution of R_{pPb} with x and Q^2 .
 - * Continuous evolution of R_{pPb} with x_{exp} at different Q_{exp}^2 between forward, central and backward η regions.

14

Conclusions

- * Recent results of charged particle production in *pp* and *p*Pb collisions presented.
 - * First measurement of double differential cross-section in forward region at 13 TeV.
 - * Important input for astroparticle physics and generator tuning.
 - * First determination of R_{pPb} for prompt charged particles in forward and backward regions at LHC.
 - * Measure prompt charged particle production cross-section in *pp* and *p*Pb at $\sqrt{s_{NN}} = 5$ TeV.
 - * Relative uncertainty in R_{pPb} below 5%.
 - * Study of cold nuclear matter effects over wide range of Bjorken-*x*.
 - * Strong constraint to nuclear PDFs and saturation models down to very low Bjorken-*x*.

Backup

Available datasets

Full Run 1+2 dataset from Heavy Ion collisions: *

- Also pp data at 5, 7, 8 and 13 TeV samples available. Total of 9 fb⁻¹. *
- * small systems.

Data from pPb collisions are an ideal benchmark to study cold nuclear matter effects and collectivity in

Prompt charged particle production in pp at 13 TeV

- Measurement dominated by systematic uncertainties. *
- Systematic uncertainties vary heavily across the bins. *
 - Overall below 5%. *
 - Typically dominated by the proxy samples for * efficiency calculations.
- Uncertainty (2.3 to 15) %: *
 - Fake tracks < 9.5%. *
 - Material interactions < 12%. *
 - Tracking efficiency < 5.1%. *

