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The precision requirements

The precision requirements
m The LHC becomes a precision machine.

m Theoretical cross sections have been achieved at NNLO in QCD, &/(a2), for
many processes.

m Due to a, ~ a2, we expect the QED corrections are the same level.

m The photon-initiated processes (Y+7,q,g9 — X ) will have observable effects.
Many applications

The SV processes

m Drell-Yan: ¢T¢—
s WEtH
E WHW-

m Heavy leptons: LT L~
m Charged Higgs: H*, H**
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The existing photon PDFs

The first generation
m MRST2004QED (01009 models the photon PDF with an effective mass scale.

m NNPDF23QED [130s.0505s and NNPDF3.0QED (141088491 cOnstrains photon PDF with
the LHC Drell-Yan data, qg,yy — £t~
m CT1l4qed_inc fits the inelastic ZEUS ep — ey+ X data psosoe0s), and include
elastic component as well.
The second generation
m Recently, LUXqed directly takes the structure functions Fy 1(z, Q?) to
constrain photon PDF uncertainty down to percent level peor.0a26 1708 01256]

m NNPDF3.1luxqged pr2oms3 initializes photon PDF with LUX formula at
Up =100 GeV (a high scale) and evolves DGLAP equation both upwardly and
downwardly.

m MMHT2015qed pooroorso initializes photon at (g =1 GeV (a low scale) and
evolve DGLAP upwardly.

m Our work incorporates the LUX formalism with the CT18 poi2100s3 global analysis.
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The LUX formalism [1607.04266,1708.01256]
m The DIS process: ep — e+ X

o ~ Ly H" ~ Fy T~ bo” +as o)+

m Matching these two approaches Ieadzs to the LUX master formula:
1 14 = d 2z2m2
o) =g | Z{/f 19 Q?)szyquwi;”) x

27coc

Fale/z,Q?) — 2* Fi(a/z, QQ)} aQ(MQ)ZQFQ(x/z#Q)}-

The square bracket term corresponds to the “physical factorization” scheme,
while the second term is referred as the “MS-conversion” term.

m The structure functions Fb ;, can be directly measured, or calculated through
pQCD in the high-energy regime.
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The breakup of (z, Q%) plane: nonperturbative resources

L High @* continuum region (pQCD CT18NNLO)

Low @* continuum region
(HERMES GD-11P) _—
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Elastic (A1/Ye)

m In the resonance region W?=m2+ Q?(1/z—1) < W}, the structure functions are

lo’

taken from CLAS 301209 or Christy-Bosted (ori2373 fits.

m In the low-Q? continuum region W2 > W2 GeV?, the HERMES GD11-P
mozsros) fits with ALLM (pLeiseyy functional form.

m In the high-Q? region (Q? > Q3py), Fo.1, are determined through pQCD.

m The elastic form factors are taken from A1l [sor.6227 or Ye prorososs fits of world
data.
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Two approaches: LUX vs DGLAP

m CT18lux: directly calculate the photon PDF with the LUX formalism

m CT18qed: initialize the inelastic photon PDF with the LUX formalism at low
scales, and evolve the QEDN1,0®QCDNNLo DGLAP equations up to high
scales, S|m|Iar to MMHT2015qed
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z 7 i
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1/ —CT18qed1 3GeV — NNPDF3.11uxQED \ I yXop= eV)
0967 cT18ged — MMHT2015qed 0.96
10~ 107 0.001 0.010 0.100 1 10-° 107 0.001 0.010 0.100 1

The take-home message:
® In the intermediate-z region, all photon PDFs give similar error bands.
m CT18lux photon PDF is in between LUXqed (also, NNPDF3.1luxQED) and
MMHT2015qed, while CT18qed gives a smaller photon PDF.
m In the large-z region, the DGLAP approach (for both MMHT2015qed and
CT18qed) gives a smaller photon than the LUX approach.
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The difference between LUX and DGLAP

m The DGLAP only evolves the inelastic photon

dl?’)/inel a el 9
——— = — | 2Py @zy"" + ) efxPy, ®xq;
dlogu? 27 ( ; ¢

m The first-order solution corresponds to the LO F5 in LUX formalism

Yl (2, u?) / dlog Q2 Ze TPyq ® 1fy, — F. O in LUX formula

m It explains CT18qed gives larger photon at small z than CT18lux.
m MMHT2015qed gives smaller photon at small z, because the smaller
charge-weighted singlet quark distributions.
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The large = behavior: nonperturbative contribution

m At large z, the LUX approach gives significantly larger PDF than the DGLAP
one.

m |t is resulted from the non-perturbative Fy at low energy (resonance and
low- Q2 continuum regions).

m It induces a big uncertainty with the DGLAP low initialization scale approach,
just because of scaling violation is not well behaved in the non-perturbative Fs.

m It can be rescued with a slightly higher initialization scale above the pQCD
matching scale @ppr ~ 3 GeV.
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Photon PDF uncertainties

v — T A N,
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m Al pol. unc.: the uncertainty of the Al fit of the world polarized data
Al unpol.: Switching to Al fit of the world unpolarized data

CB: Changing resonance SF from CLAS to Christy-Bosted fit
Variations of Ry, /1 = 61,/07 by 50% p7os 01256

HT: Adding higher-twist contribution to Fj, prsoise) and Fo [is02.03154).
Q2pp: changing the matching scale 9 — 5 GeV?

MHO: varying the scale to estimate the missing high-order uncertainty

TMC: adding the target mass correction to the SFs.
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The applications

WTH production Exclusive yy — W+ W~
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m At a large invariant mass, the photon initiated processes make a significant
contribution

m CT18lux elastic photon (including both quarks and leptons) is smaller than
MMHT2015qed one (only including quarks).
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Summary and conclusions

Ratio to CT18lux
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m We have two phofon PDF sets, CT18lux and CT18qed, based on the LUX and

DGLAP approach, respectively.

The overall uncertainties agree with the LUXqed(also NNPDF3.1luxQED) and
MMHT2015qed.

In the intermediate-z region, CT18lux is in between the LUXqed(also
NNPDF3.11luxQED) and MMHT2015qed, while CT18qed is smaller.

In the small-z region, the CT18qed is lager than CT18lux, due to the equivalent LO
SF. The MMHT2015qed becomes smaller because of the smaller singlet PDFs X..
In the large-z region, the DGLAP approach (MMHT2015qed and CT18qed) give
smaller PDFs due to the non-perturbative SFs.

The low-py DGLAP approach gives larger uncertainty at large z, due to
non-perturbative SFs at low scales. 1/1



The cancellation in a higher order calculation

m Suppose we want to calculate a process y+ X — Y.

m At one order higher, both photon and quark parton will participate.

m The PDFs are related with the DGLAP evolution, with divergence properly
canceled.

m This can be also achieved in the LUX approach, with proper MS conversion
terms order by order.
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The scale variation of the MS conversion term

m In the default scale choice u?/(1— z), the MS-conversion term is
Ty ~ <_Z2)F2($/z7“2)’
which is negative

m When varying the scale as 2, the conversion term should be change as well,

14z 22 2
s =y o [V [ et () Pa(a/ 2. 0%,

277:a M2z

With M2[z] = 2, we have [ = dQQ = log 1.

m The central MMHT2015qed corresponds to M2[z] = u? choice at low scale
Ho = 1 GeV.

m The DGLAP approach at low scale DOES give larger uncertainty due to the
large non-perturbative contributions to structure functions.

m One method to avoid it is to start ¥ PDF at a higher scale in the pQCD region,
; 2 2
ie., Uy > Qppp-
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The DGLAP approach gives smaller PDFs at large z

m MMHT2015qged divides the integration into two regions:

g
Ho -2
(/12m%+ 2 )[}
z Ho

The second part is integrated semi-analytically:

1o sz 2z22m?2 1 222m2z z
/‘u <Zpyq+2p Po(z/z,15) = 0* (1) zpyqlogg'*‘% F2<;7l~13)

Q
The FL is dropped because Fj, ~ O(as) < Fs.

Mo

m In contrast, we integrate over Fy(z/z, Q?)

rather than Fa(z/z,u3). T
m It explains the MMHT2015qed gives smaller z ar
photon at large  than CT18qed. )

® MMHT15 does not include the uncertainty
induced by g variation.

3/4



The NLO QED evolution and momentum sum rules
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m The NLO QED corrections to splitting functions
_ & L01), O &5 (1) ( o )2 (0.2)
P,i=—P, — 2P — ) P,
EDY ) +27r27t ity ”
m The NLO QED correction is negative.
m The momentum sum rules: the impact is ¢(0.1%), negligible compared with
higher order QED evolution.

<$(Z+g+yinel+el> =1
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