

Next generation nuclear PDFs and their relevance to hadron structure

Petja Paakkinen

IGFAE – Universidade de Santiago de Compostela

HADRON2021 27 Jul 2021

What the nuclear PDFs are?

Based on the collinear factorization of QCD:

$$\mathrm{d}\sigma^{AB\to k+X} \stackrel{Q\gg\Lambda_{\mathrm{QCD}}}{=} \sum_{i,j,X'} f_i^A(Q^2) \otimes \mathrm{d}\hat{\sigma}^{ij\to k+X'}(Q^2) \otimes f_j^B(Q^2) + \mathcal{O}(1/Q^2)$$

The coefficient functions ${\rm d}\hat{\sigma}^{ij\to k+X'}$ are calculable from perturbative QCD. . .

PDFs are *universal*, process independent, and obey the DGLAP equations

$$Q^2 \frac{\partial f_i^A}{\partial Q^2} = \sum_j P_{ij} \otimes f_j^A$$

How do we get the $f_i^{p/A}$?

... but the parton distribution functions f_i^A, f_j^B contain long-range physics and cannot be obtained by perturbative means

For a nucleus A, one can decompose

 $\begin{array}{c} \text{bound-proton PDF} \\ f_i^A(x,Q^2) = Z f_i^{p/A}(x,Q^2) + (A-Z) \ f_i^{n/A} \ (x,Q^2), \end{array}$

and assume $f_i^{p/A} \overset{\mathrm{isospin}}{\longleftrightarrow} f_j^{n/A}$

- Physical models: too numerous to describe here 'Everybody's Model is Cool'
- Extract from lattice: problematic due to the PDF definition on the light cone
- Fit to data: parametrize the *x* and *A*-dependence the global analysis approach

Nuclear modification factors

Nuclear PDFs (nPDFs) often described in terms of

 $\begin{array}{rl} & \text{nuclear modification} \\ f_i^{p/A}(x,Q^2) \ = \ R_i^{p/A}\left(x,Q^2\right) f_i^p\left(x,Q^2\right) \\ \text{bound-proton PDF} & \text{free-proton PDF} \end{array}$

where $R_i^{p/A}$ exhibits the typical shape of

- Fermi motion at x > 0.7
- EMC (European Muon Collaboration) effect at 0.3 < x < 0.7
- \blacksquare Antishadowing at 0.03 < x < 0.3
- \blacksquare Shadowing at x < 0.03

where \boldsymbol{x} is the fraction of nucleon momentum carried by the parton

These effects were originally discovered in deep-inelastic scattering (DIS) experiments, but have since been verified also in other perturbative processes (nPDF universality)

Latest and next generation NLO nPDF global fits

	EPPS16	nNNPDF2.0	nCTEQ15WZ	nCTEQ15HIX	EPPS21 Prelim.
la NC DIS	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
+ JLab NC DIS				\checkmark	√ new!
ν A CC DIS	\checkmark	\checkmark			\checkmark
pA DY	\checkmark		\checkmark	\checkmark	\checkmark
πA DY	\checkmark				\checkmark
RHIC dAu/pp π^0	\checkmark		✓		\checkmark
LHC pPb dijet $R_{\rm FB}$	\checkmark				
\rightarrow dijet $R_{\rm pPb}$					√ new!
LHC pPb D ⁰					√ new!
LHC pPb W,Z Run 1	\checkmark	\checkmark	✓		\checkmark
+ Run 2 pPb W		\checkmark	\checkmark		√ ne _W į
Q cut in DIS	1.3 GeV	1.87 GeV	2 GeV	1.3 GeV	1.3 GeV
Data points	1811	1467	828	1564	2023 Prelim.
Free parameters	20	256	19	19	24 Prelim.
Error analysis	Hessian	Monte Carlo	Hessian	Hessian	Hessian
Error tolerance $\Delta \chi^2$	52	N/A	35	35	35 Prelim.
Free-proton PDFs	CT14	NNPDF3.1	\sim CTEQ6M	\sim CTEQ6M	CT18A Prelim.
HQ treatment	S-ACOT	FONLL	S-ACOT	S-ACOT	S-ACOT
Indep. flavours	6	6	5	4	6
Reference	EPJC 77, 163	JHEP 09, 183	EPJC 80, 968	PRD 103, 114015	ТВА

4/16

W bosons in pPb at 8.16 TeV

Potential probes of the flavour separation (and strangeness):

- $u\bar{d} \ (u\bar{s},c\bar{s}) \to W^+$
- $\bullet \ d\bar{u} \ (s\bar{u},s\bar{c}) \to W^-$

Remember: small-x, high- Q^2 quarks and gluons correlated by DGLAP evolution \rightarrow constraints for gluons

Increased statistics for W bosons in the 8.16 TeV data set

→ Included in nNNPDF2.0 and nCTEQ15WZ

Absolute cross sections carry large proton-PDF uncertainty!

Difficult to disentagle nuclear modifications from the proton d.o.f.s

We could use the data as:

Absolute cross sections

as in nNNPDF2.0, nCTEQ15WZ

the current plan for EPPS21

- $\boldsymbol{\rightarrow}$ susceptible to the proton-PDF uncertainties, should be accounted in the fit
- Self-normalized cross sections
 - \rightarrow cancel overall-normalization uncertainty, some proton-PDF uncertainties bound to remain
- Forward-to-backward ratios
 - \rightarrow more direct cancellation of the proton-PDF uncertainties, lose some data points
- Nuclear modification ratios (with 8.0 TeV pp)
 - → expect good cancellation of the proton-PDF uncertainties, additional experimental uncertainties from the proton-proton measurement

 $\mathrm{d}\sigma^{\mathrm{pPb}}_{8.16~\mathrm{TeV}}/\mathrm{d}\eta_{\mu}~[\mathrm{nb}]$

180

160

140

120

100

80

60

-3

Absolute cross sections carry large proton-PDF uncertainty!

Difficult to disentagle nuclear modifications from the proton d.o.f.s

We could use the data as:

- Absolute cross sections
 - \rightarrow susceptible to the proton-PDF uncertainties, should be accounted in the fit

S16 uncertainty

14 uncertainty

0

- Self-normalized cross sections
 - → cancel overall-normalization uncertainty, some proton-PDF uncertainties bound to remain

0

 η_{μ}

- Forward-to-backward ratios
 - \rightarrow more direct cancellation of the proton-PDF uncertainties, lose some data points
- Nuclear modification ratios (with 8.0 TeV pp)
 - \rightarrow expect good cancellation of the proton-PDF uncertainties, additional experimental uncertainties from the proton-proton measurement

180

160

140

as in EPPS16

the current plan for EPPS21

Absolute cross sections carry large proton-PDF uncertainty!

Difficult to disentagle nuclear modifications from the proton d.o.f.s

We could use the data as:

Absolute cross sections

as in nNNPDF2.0, nCTEQ15WZ

the current plan for EPPS21

- $\boldsymbol{\rightarrow}$ susceptible to the proton-PDF uncertainties, should be accounted in the fit
- Self-normalized cross sections
 - \rightarrow cancel overall-normalization uncertainty, some proton-PDF uncertainties bound to remain
- Forward-to-backward ratios
 - \rightarrow more direct cancellation of the proton-PDF uncertainties, lose some data points
- Nuclear modification ratios (with 8.0 TeV pp)
 - → expect good cancellation of the proton-PDF uncertainties, additional experimental uncertainties from the proton-proton measurement

Absolute cross sections carry large proton-PDF uncertainty!

Difficult to disentagle nuclear modifications from the proton d.o.f.s

We could use the data as:

Absolute cross sections

as in nNNPDF2.0, nCTEQ15WZ

the current plan for EPPS21

- $\boldsymbol{\rightarrow}$ susceptible to the proton-PDF uncertainties, should be accounted in the fit
- Self-normalized cross sections
 - $\boldsymbol{\rightarrow}$ cancel overall-normalization uncertainty, some proton-PDF uncertainties bound to remain
- Forward-to-backward ratios
 - \rightarrow more direct cancellation of the proton-PDF uncertainties, lose some data points
- Nuclear modification ratios (with 8.0 TeV pp)
 - → expect good cancellation of the proton-PDF uncertainties, additional experimental uncertainties from the proton-proton measurement

Absolute cross sections carry large proton-PDF uncertainty!

Difficult to disentagle nuclear modifications from the proton d.o.f.s

We could use the data as:

Absolute cross sections

as in nNNPDF2.0, nCTEQ15WZ

the current plan for EPPS21

- $\boldsymbol{\rightarrow}$ susceptible to the proton-PDF uncertainties, should be accounted in the fit
- Self-normalized cross sections
 - $\boldsymbol{\rightarrow}$ cancel overall-normalization uncertainty, some proton-PDF uncertainties bound to remain
- Forward-to-backward ratios
 - \rightarrow more direct cancellation of the proton-PDF uncertainties, lose some data points
- Nuclear modification ratios (with 8.0 TeV pp)
 - → expect good cancellation of the proton-PDF uncertainties, additional experimental uncertainties from the proton-proton measurement

How to propagate proton-PDF uncertainties into nPDF fit?

Note: It is the strong *positive* correlations which make the uncertainty reduction with ratios possible!

Study the impact on nuclear PDFs with the Hessian reweighting method see [Paukkunen & Zurita, JHEP 12 (2014) 100]

Largest impact at the parametrization scale on gluons (probed through $g \rightarrow q\bar{q}$ splittings)

- can be reduced by using the ratio observables
- may still become relevant with the increased data precision at LHC Run 3
- → possible consequences for the attempts to constrain EMC-effect models

Study the impact on nuclear PDFs with the Hessian reweighting method see [Paukkunen & Zurita, JHEP 12 (2014) 100]

Largest impact at the parametrization scale on gluons (probed through $g \rightarrow q\bar{q}$ splittings)

- can be reduced by using the ratio observables
- may still become relevant with the increased data precision at LHC Run 3
- → possible consequences for the attempts to constrain EMC-effect models

Study the impact on nuclear PDFs with the Hessian reweighting method see [Paukkunen & Zurita, JHEP 12 (2014) 100]

Largest impact at the parametrization scale on gluons (probed through $g \rightarrow q\bar{q}$ splittings)

- can be reduced by using the ratio observables
- may still become relevant with the increased data precision at LHC Run 3
- → possible consequences for the attempts to constrain EMC-effect models

Study the impact on nuclear PDFs with the Hessian reweighting method see [Paukkunen & Zurita, JHEP 12 (2014) 100]

Largest impact at the parametrization scale on gluons (probed through $g \rightarrow q\bar{q}$ splittings)

- can be reduced by using the ratio observables
- may still become relevant with the increased data precision at LHC Run 3
- → possible consequences for the attempts to constrain EMC-effect models

Study the impact on nuclear PDFs with the Hessian reweighting method see [Paukkunen & Zurita, JHEP 12 (2014) 100]

Largest impact at the parametrization scale on gluons (probed through $g \rightarrow q\bar{q}$ splittings)

- can be reduced by using the ratio observables
- may still become relevant with the increased data precision at LHC Run 3
- → possible consequences for the attempts to constrain EMC-effect models

Detour: Nuclear uncertainties in proton-PDF analyses

Also proton-PDF analyses rely on heavy nuclear data (fixed-target DIS and DY)

- \rightarrow Large-*x* flavour separation depends on (assumed/fitted) nuclear corrections and uncertainties
- Might find a need for a proton+nPDF master analysis, or an iterative procedure

see [Ball, Nocera & Pearson, Eur.Phys.J.C 81 (2021) 37]

New data from non-heavy targets and understanding deuterium corrections extremely important see plenary talks by Paul E. Reimer and Timothy Hobbs

Detour: Nuclear uncertainties in pion-PDF analyses

[Notikov et al., Phys.Rev.D 102 (2020) 014040]

PDFs of charged pions are obtained from pion-nucleus DY and direct photon data

 \rightarrow Much larger errors when nuclear uncertainties are accounted for

 \ldots but note that different data are used in the fits

- \rightarrow Pion-PDF uncertainties become correlated with the nuclear ones
- ! Need for a way to consistently propagate the cross-correlated uncertainties to observables

We study baseline-PDF sensitivity by fitting nuclear modifications separately for each CT18A error set

Baseline error mostly subdominant in the observables we fit, but shows up e.g. in the fixed-target DY

11/16

Dijets at 5.02 TeV ^{new!}

preliminary results, Ref: [Eskola, PP, Paukkunen & Salgado, arXiv:2106.13661]

D^0 s at 5.02 TeV – backward $n_{e_W!}$

preliminary results, Ref: [Eskola, PP, Paukkunen & Salgado, arXiv:2106.13661]

Excellent fit!

Results in line with the reweighting study [Eskola, Helenius, PP & Paukkunen, JHEP 05 (2020) 037]

Using the NLO pQCD S-ACOT- $m_{\rm T}$ GM-VFNS [Helenius & Paukkunen, JHEP 05 (2018) 196]

Using a $p_{\rm T}>3~{\rm GeV}$ cut to reduce theoretical uncertainties

D^0 s at 5.02 TeV – forward

newl

preliminary results, Ref: [Eskola, PP, Paukkunen & Salgado, arXiv:2106.13661]

Excellent fit!

Results in line with the reweighting study [Eskola, Helenius, PP & Paukkunen, JHEP 05 (2020) 037]

Using the NLO pQCD S-ACOT- $m_{\rm T}$ GM-VFNS [Helenius & Paukkunen, JHEP 05 (2018) 196]

Using a $p_{\rm T} > 3 {\rm ~GeV}$ cut to reduce theoretical uncertainties

Ws at 8.16 TeV ^{new!}

preliminary results, Ref: [Eskola, PP, Paukkunen & Salgado, arXiv:2106.13661]

Fully consistent with the dijets and D^0s

Important check on the nPDF universality & factorization

These data do not appear to give additional flavour-separation constraints on top of those we had already in EPPS16

Looking forward to increased precision at LHC Run 3

Comparison to EPPS16

Flavour separation (esp. strangeness) remains a difficult beast to tame

- Not enough data to put stringent constraints on a flavour by flavour basis
- Some sensitivity to proton-PDF uncertainties

Significant reduction in the gluon uncertainties!

- Driven by dijet and D⁰ data, but consistent with Ws
- Strong evidence for mid-*x* antishadowing and small-*x* shadowing

Summary

Next generation nuclear PDFs will include a large set of data from the LHC pPb collisions

- A new EPPS nPDF fit on its way...
- New constraints on gluon modifications in lead \rightarrow strong evidence for (anti)shadowing!
- Flavour separation uncertainties still remain large

With increasing precision the free-proton PDF uncertainties become more important

- Can use data as suitable ratios to reduce the uncertainty and decorrelate nuclear-modification and free-proton d.o.f.s
- Residual free-proton PDF uncertainty can still be relevant e.g. for the flavour separation

Nuclear data also used in proton and pion PDF analyses

- Nuclear uncertainties can be large and are taken into account in some analyses but not all
- For accurate predictions it would be needed to provide the correlations to the general user

Backup

JLab NC DIS ^{new!}

preliminary results, Ref: [Eskola, PP, Paukkunen & Salgado, arXiv:2106.13661]

Comparison to nNNPDF2.0, nCTEQ15WZ Ref: [Eskola, PP, Paukkunen & Salgado, arXiv:2106.13661]

All three consistent within uncertainties, but significant differences in the uncertainty estimates

Best constrained gluons in the (prelim.) EPPS21 fit!

PDF reweighting: different approximations [Eskola, PP & Paukkune

The Hessian reweighting is a method to study the impact of a new set of data on the PDFs without performing a full global fit

$$\chi^2_{\text{new}}(\mathbf{z}) = \chi^2_{\text{old}}(\mathbf{z}) + \sum_{ij} \left(y_i(\mathbf{z}) - y_i^{\text{data}} \right) C_{ij}^{-1} \left(y_j(\mathbf{z}) - y_j^{\text{data}} \right)$$

Cancellation of hadronization effects

Hadronization uncertainty

Parton jets have higher cross section for R = 0.3jets with same kinematic selections compared to hadron jets

Parton jets are harder fragmenting

After self normalization effect of hadronization is negligible

CMS dijets at **pp**

- Predicted NLO distributions somewhat wider than the measured spectra
- \blacksquare High- $p_{\rm T}^{\rm ave}$ midrapidity robust against scale variations and LO-to-NLO effects
 - \rightarrow can expect NNLO corrections to be small in this region
 - $\boldsymbol{\rightarrow}$ observed discrepancy seems to be a PDF related issue
- Refitting might be needed to improve agreement with data
 - \rightarrow study the impact with the reweighting method

CMS dijets at **pp** – CT14 reweighted

CMS dijets at **pPb**

- pPb data deviates from NLO calculations *almost the same way* as the pp data
 - → had we not seen the same deviations in pp, we might have interpreted this as a fault in our nuclear PDFs
- Compared to pp case we have additional suppression in data compared to theory at forward rapidities
 - \rightarrow implication of deeper gluon shadowing

CMS dijets at **pPb** after CT14 reweighting [Eskola, PP & Paukkunen, Eur.Phys.J.C 79 (2019) 511]

- Modifications needed in CT14 to describe pp data have large impact on pPb predictions
 - → it is imperative to understand the pp baseline before making far-reaching conclusions from pPb data
- Using these data directly in nuclear PDF analysis with CT14 proton PDFs would lead to
 - overestimating nuclear effects
 - large scale-choice bias

→ Consider nuclear modification factor instead

Heavy-flavour production mass schemes

FFNS

In fixed flavour number scheme, valid at small $p_{\rm T},$ heavy quarks are produced only at the matrix element level

Contains $\log(p_{\rm T}/m)$ and $m/p_{\rm T}$ terms

ZM-VFNS

In zero-mass variable flavour number scheme, valid at large $p_{\rm T},$ heavy quarks are treated as massless particles produced also in ISR/FSR

Resums $\log(p_{\mathrm{T}}/m)$ but ignores m/p_{T} terms

GM-VFNS

A general-mass variable flavour number scheme combines the two by supplementing subtraction terms to prevent double counting of the resummed splittings, valid at all $p_{\rm T}$

subtraction term

Resums $\log(p_{\rm T}/m)$ and includes $m/p_{\rm T}$ terms in the FFNS matrix elements

Important: includes also gluon-to-HF fragmentation - large contribution to the cross section!

EPPS16 reweighted LHCb D-meson $R_{\rm pPb}$

[Eskola, Helenius, PP & Paukkunen, JHEP 05 (2020) 037]

- Data well reproduced with the reweighted results
- Significant reduction in EPPS16 uncertainties especially in forward bins
- Good agreement with data below cut no physics beyond collinear factorization needed

nCTEQ15 reweighted LHCb D-meson $R_{\rm pPb}$ [Eskola, Helenius, PP & Paukkunen, JHEP 05 (2020) 037]

- Uncertainties smaller to begin with in the forward direction (less flexible small-x parametrization) while larger in backward almost identical results
- Data well reproduced