

# Probing gluons with exclusive production in UPCs at the LHC

Aude Glaenzer DPhN / IRFU / CEA-Saclay





### What is a UPC = Ultra Peripheral Collision?

- Ultrarelativistic system
- Large impact parameter  $(b > R_1 + R_2)$
- No nuclear overlap
- Reactions induced by photons with typically very small virtualities, of the order of tens of MeV<sup>2</sup>, dominate

• Photon flux intensity  $\propto Z^2$ 

QCD and hadron structure 2021 - A. Glaenzer





p, Pb

- The virtual photon fluctuates in a qq dipole
- The virtual photon interacts with the target (p, Pb) and probes its internal structure via the exchange of 2 gluons
- From this interaction a vector meson  $(J/\psi, \psi')$  is produced (LO picture)
- Clear experimental signature of UPCs: the decay products of the vector meson are the only particles detected in an otherwise empty detector
- $Q^2 \sim m_V^2 / 4 \rightarrow$  the mass of the charm quark provides an energy scale large enough to allow for perturbative QCD calculations
- In the case of Pb-Pb collisions, coherent interaction with the photon: the photon interacts consistently with all nucleons in a nucleus
- low Bjorken-x (*shadowing*, *saturation*...)

QCD and hadron structure 2021 - A. Glaenzer



• UPCs are of great interest to probe the target (p or Pb nuclei) and hence search for phenomena at

### Part 1: gluon saturation in p-Pb UPCs

### Gluon saturation and p-Pb UPCs

- Saturation: a dynamic equilibrium between gluon radiation and recombination
- Black disk limit: area where the number of gluons stops increasing, fluctuations of the proton configurations are suppressed
- The exclusive photoproduction of charmonium off protons ( $\gamma p \rightarrow J/\psi p$ ) is a very clean probe with which to search for saturation effects, since  $\sigma(\gamma p \rightarrow J/\psi p) \propto [gluon density in the proton]^2$  at LO in pQCD

ref: L.V. Gribov, E.M. Levin, and M.G. Ryskin, Phys. Rept. 100 (1983) 1.





## Exclusive J/w photoproduction in p-Pb UPCs

- In fact, the non-perturbative object in the cross section is a generalised parton distribution function (GPD)
- At LO, the GPD function F<sub>g</sub>(X,ξ) accounts for the fact that the momenta of the `left' and `right' partons carry different proton momentum fractions X + ξ and X ξ respectively.



(from Phys.Rev.D 101 (2020) 9, 094011)

• The Shuvaev transform: as  $\xi \to 0$  (and at t = GPD  $F_g(X, \xi)$ 

relevant values of X in the convolution of the GP the coefficient function are of the order of

0),  

$$\rightarrow$$
 PDF( $x = X + \xi$ )  
 $\rightarrow$  gluon PDF is probed for  $x \sim 2\xi$   
 $\frac{d\sigma}{dt}(\gamma^* p \rightarrow J/\Psi p)\Big|_{t=0} \propto [xg(x, Q^2)]^2$   
6



## Exclusive $J/\psi$ photoproduction in p-Pb collisions • Center-of-mass energy per nulceon $\sqrt{s_{NN}} = 5.02 \text{ TeV}$ Pb $J/\Psi$ $W_{\gamma^* p}$

- Pb nucleus is the  $\gamma$ -emitter in 95% of the cases
- Measurements performed in
  - the mid (|y| < 0.8),
  - semi-backward (-2.5 < y < -1.2),
  - semi-forward (1.2 < y < 2.7),
  - backward (-3.6 < y < -2.6),
  - and forward (2.5 < y < 4)

rapidity intervals

- $p-\gamma^*$  center-of-mass energy given by  $W_{\gamma^*p}^2 = 2E_p M_{J/\Psi} e^{-y}$  where y is the rapidity of the  $J/\psi$ defined according to the proton beam
- Thus, measurements in ALICE in Run 1 span the  $W_{VP}$  range from 20 to 700 GeV







### Selection of data (mid-rapidity)



#### QCD and hadron structure 2021 - A. Glaenzer



### vetoes

### Selection of data (forward rapidity)





- Pb nucleus is the  $\gamma$ -emitter in 95% of the cases
- $p-\gamma^*$  center-of-mass energy given by  $W_{\gamma^*p}^2 = 2E_p M_{J/\Psi} e^{-y}$  where y is the rapidity of the J/ $\psi$ defined according to the proton beam
- Bjorken-x:  $x \propto W_{\gamma^* p}^{-2}$
- 2 most extreme energy configurations obtained from the muon arm:

the J/ $\psi$  goes in the direction of the proton:  $21 \text{ GeV} < W_{\gamma*p} < 45 \text{ GeV}$ 



QCD and hadron structure 2021 - A. Glaenzer



the J/ $\psi$  goes in the direction of the Pb ion:  $580 \text{ GeV} < W_{\gamma*p} < 955 \text{ GeV}$ 





### Looking for gluon saturation at LHC: published measurements



• No change in the behavior of the gluon PDF in the proton is observed between HERA and LHC energies

QCD and hadron structure 2021 - A. Glaenzer



- $\sigma(W_{\gamma*p}) \propto [gluon PDF of the proton]^2$
- Power-law fit  $\sigma \sim W_{\gamma^* p}^{\delta}$
- In a lowest order formulation,  $\sigma \sim W^{\delta}_{\gamma^* p} \rightarrow xg(x) \sim x^{-\delta/2}$ 
  - a change in slope might be a sign of the onset of gluon saturation effects
- Fit to ALICE data (Run 1) alone:  $\delta = 0.68 \pm 0.06 \rightarrow$ no deviation from a power law is observed up to about 700 GeV

 $(ZEUS: \delta = 0.69 \pm 0.02 \text{ (stat)} \pm 0.03 \text{ (syst)}, H1: \delta =$  $0.67 \pm 0.03$  (stat + syst))

- LHCb studied the same process in p-p collisions (symmetric system : low energy contribution constrained via HERA data)
- HERA: H1 and ZEUS have measured the cross section of J/ $\psi$  photoproduction at energies  $W_{\gamma^*p}$  from 20 to 305 GeV







Performance plot for 2016 data at forward rapidity



QCD and hadron structure 2021 - A. Glaenzer

## Run 2 data in p-Pb (2016)



| 7 |                                                    |                                                                |                                                           |
|---|----------------------------------------------------|----------------------------------------------------------------|-----------------------------------------------------------|
|   | data                                               | 2013                                                           | 2016                                                      |
|   | CM energy in the<br>p-Pb system                    | 5.02 TeV                                                       | 8.16 TeV                                                  |
|   | Maximum W <sub>Y*p</sub>                           | 900 GeV                                                        | 1500 GeV                                                  |
|   | Luminosity                                         | 3.9 nb <sup>-1</sup> in p-Pb<br>(4.5 nb <sup>-1</sup> in Pb-p) | 7.6 nb <sup>-1</sup> in p-<br>(11.9 nb <sup>-1</sup> in P |
|   | Kinematic regime<br>at forward rapidity<br>(min x) | x ~ 2 × 10 <sup>-4</sup>                                       | x ~ 4 × 10                                                |

 Ongoing analysis with the first measurement of dissociative  $J/\psi$  where the target proton breaks up





### Part 2: gluon shadowing in Pb-Pb UPCs

- Nuclear structure functions in nuclei are different from the superposition of those of their constituent nucleons
- The nuclear ratio is defined as the nuclear structure function per nucleon divided by the nucleon structure function  $R_{F_2}^A(x, Q^2) = \frac{F_2^A(x, Q^2)}{AF_2^{nucleon}(x, Q^2)}$
- Gluon shadowing factor  $R_g(x, Q^2) = \frac{\text{nuclear gluon density distribution}}{\text{gluon distribution in the proton}}$
- At LO pQCD,  $\frac{d\sigma^{COn}}{dt} (\gamma^* p, Pb \rightarrow J/\Psi p, Pb) \Big|_{t=0} \propto [gluon density]^2 [1]$

• Hence 
$$R_g(x, Q^2) \approx \sqrt{\frac{\sigma^{\text{coh}}(\gamma + \text{Pb} \rightarrow J/\psi + \text{Pb})}{\sigma^{\text{IA}}(\gamma + \text{Pb} \rightarrow J/\psi + \text{Pb})}}}$$
 where  $\sigma$ 

the impulse approximation based on the exclusive photoproduction measurements with the proton target • Can be studied in ultra-peripheral collisions of Pb-Pb nuclei at the LHC via the study of coherent  $J/\psi$ photoproduction off lead nuclei ( $\gamma + Pb \rightarrow J/\psi + Pb$ )

<sup>1</sup> <u>https://doi.org/10.1007/BF01555742</u> QCD and hadron structure 2021 - A. Glaenzer



### Pb-Pb collisions in ALICE

In the limit t  $\rightarrow$  0, the Bjorken-x variable can be defined as:  $x = \frac{m_V}{\sqrt{s_{NN}}} \exp(\pm y)$ 

where  $m_{\rm V}$  is the mass of the coherently produced  $c\bar{c}$  states and y its rapidity



 $\rightarrow$  Low Bjorken-x values ranging from x  $\sim 10^{-5}$  to x  $\sim 10^{-2}$  at LHC energies

QCD and hadron structure 2021 - A. Glaenzer





 $\sqrt{s_{NN}}$ 

### $J/\psi$ and $\psi'$ photoproduction in UPCs

Measurements performed:

- At forward rapidity (-4.0 < y < -2.5): study of  $J/\psi \rightarrow \mu^+\mu^-$
- At mid-rapidity (|y| < 0.8 in Run 2): study of
  - ►  $J/\psi \rightarrow \mu^+\mu^-$ ,  $J/\psi \rightarrow e^+e^-$ ,  $J/\psi \rightarrow p\bar{p}$
  - ▶  $\psi' \rightarrow I^+I^-$ ,  $\psi' \rightarrow J/\psi \pi^+\pi^-$  followed by  $J/\psi \rightarrow I^+I^-$





## Signal reconstruction at mid-rapidity



#### QCD and hadron structure 2021 - A. Glaenzer



ALI-PUB-482691

#### from ALICE collaboration, arXiv:2101.04577 [nucl-ex]]



## Signal reconstruction at mid-rapidity



#### QCD and hadron structure 2021 - A. Glaenzer





#### from ALICE collaboration, arXiv:2101.04577 [nucl-ex]]

## Signal reconstruction at mid-rapidity



#### QCD and hadron structure 2021 - A. Glaenzer





#### from ALICE collaboration, arXiv:2101.04577 [nucl-ex]]

### Measurement of $d\sigma/dy$ and comparison with the models





- ▶ L<sub>int</sub> = 233 µb<sup>-1</sup> (Run 1 data: integrated luminosity = 55  $\mu$ b<sup>-1</sup>)
- measurement of  $\sigma_{J/\psi}$  in 3 rapidity intervals
- ►  $N(J/\psi \rightarrow \mu\mu) = 3120$
- Forward rapidity:
  - ►  $L_{int} = 754 \ \mu b^{-1}$
  - measurement of  $\sigma_{J/\psi}$  in 6 rapidity intervals
  - ►  $N(J/\psi \rightarrow \mu\mu) = 21800$  and  $N(J/\psi$ → ee) = 2116

Nuclear gluon shadowing factor: $R_g(x, Q^2) \approx 1$ 

►  $R_g(x \in (0.3 - 1.4) \times 10^{-3}, Q^2) \approx 0.65 \pm 0.03$  for J/ $\psi$ → good agreement with  $R_g(x \sim 10^{-3}) = 0.61^{+0.05} - 0.04$  obtained from the measurement at  $\sqrt{s_{NN}} = 2.76$  TeV.





#### Measurement of $d\sigma/dy$ and comparison with the models (qm) ALICE Pb+Pb $\rightarrow$ Pb+Pb+J/ $\psi$ $\sqrt{s_{_{NN}}} = 5.02 \text{ TeV}$ • ALICE coherent $J/\psi$ 12 مر/م 12 photoproduction of $J/\psi$ off protons, does not include shadowing Impulse approximation STARLIGHT EPS09 LO (GKZ) LTA (GKZ) 10 IIM BG (GM) **EPS09 LO:** parametrization of the available nuclear shadowing data IPsat (LM) BGK-I (LS) **LTA:** leading twist approximation of nuclear shadowing based on GG-HS (CCK) the combination of the Gribov-Glauber theory and the diffractive b-BK (BCCM) ► **HGG-HS**: hot-spot model coupled with Gribov-Glauber theory **b-BK**: color dipole approach with saturation based on solution of the impact-parameter dependent Balitsky-Kovchegov equation However none of the models is able to describe the full set of

- **STARlight**: parametrisation of existing data on exclusive
- Indication for strong shadowing qualitatively in line with expectations from models that are based on:

  - PDFs from HERA
- data
  - The data might be better explained with a model where shadowing has a smaller effect at Bjorken x ~  $10^{-2}$  or x ~  $5 \times$  $10^{-5}$ .

 $\rightarrow$  These measurements allow for a deeper insight into the Bjorken-x dependence of gluon shadowing, but do not give information on the behaviour of gluons in the impact-parameter plane.

QCD and hadron structure 2021 - A. Glaenzer

from <u>ALICE collaboration</u>, arXiv:2101.04577 [nucl-ex]

-2



0

### To go further: measurement of $d\sigma/dt$ $(\gamma + Pb \rightarrow J/\psi + Pb)$ Pbcoherent J/ $\psi$ photoproduction cross section in Pb-Pb $J/\psi$ $W_{\gamma^*Pb}$ • the study of the |t|-dependence of coherent $J/\psi$ photoproduction provides information about the spatial distribution of gluons as a function of the Pb

- First measurement of the |t|-dependence of the UPCs @  $\sqrt{s_{NN}} = 5.02 \text{ TeV}$
- |t|<sup>2</sup> is related through a two-dimensional Fourier transform to the gluon distribution in the plane transverse to the interaction
  - impact parameter.
  - For collider kinematics  $|t| \approx p_T^2$
- measurements at midrapidity at the lower energy of  $\sqrt{s_{NN}}$  =2.76 TeV

from <u>arXiv:2101.04623</u> [nucl-ex]

QCD and hadron structure 2021 - A. Glaenzer

• Data sample (2018) approximately 10 times larger than that used in previous ALICE







Pb

#### To go further: measurement of $d\sigma/dt$ $(\gamma + Pb \rightarrow J/\psi + Pb)$ ALICE Pb+Pb $\rightarrow$ Pb+Pb+J/ $\psi$ $\sqrt{s_{_{NN}}}$ = 5.02 TeV GeV ALICE coherent J/ $\psi$ , lyl<0.8 $\mathcal{C}^{\mathsf{S}}$ Experimental uncorrelated syst. + stat. dσ<sub>γPb</sub>/dl*t*l (mb Experimental correlated syst. UPC to $\gamma$ Pb model uncertainty - STARlight (Pb form factor) --- LTA (nuclear shadowing) – b-BK (gluon saturation) Data STARlight / Data\_ 2 • LTA / Data b-BK / Data Model $\nabla$ 0.004 0.002 0.006 0.008 0.01 |t| (GeV<sup>2</sup> c<sup>-2</sup>) from Phys.Lett.B 817 (2021), <u>136280</u>

- Cross sections reported for six |t| intervals
- Comparison with models:
  - STARlight: based on the addition of the photon and Pomeron  $p_T$  (with random phase). The Pomeron  $p_T$  distribution is given by the nuclear form factor.
  - LTA: leading-twist approximation (LTA) of nuclear shadowing based on the combination of the Gribov–Glauber theory and inclusive diffractive data from HERA
  - **b-BK**: based on the color dipole approach, scattering amplitude obtained from the impactparameter dependent solution of the Balitsky-Kovchegov equation, incorporates saturation effects

#### QCD and hadron structure 2021 - A. Glaenzer

23



#### • Measurement of $d\sigma(\gamma + p \rightarrow J/\psi + p)/dW_{\gamma*p}$

- In Run 1: saturation has not been found
- ▶ In Run 2: luminosity increased, increased maximum accessible energy ~ 1500 GeV (~ 900 GeV in 2013), corresponding to x ~ 8 × 10<sup>-6</sup> (x ~ 3 × 10<sup>-5</sup> in 2013)  $\rightarrow$  ongoing analysis
- Measurement of  $d\sigma(\gamma + Pb \rightarrow J/\psi + Pb)/dy$  at midrapidity |y| < 0.8 and in the rapidity interval -4 < y < -2.5 in Pb–Pb UPCs at  $\sqrt{s_{NN}} = 5.02$  TeV.
  - Models not able to fully describe both forward and central rapidity dependence of the measured coherent  $J/\psi$  cross section.
- Measurement of  $d\sigma(\gamma + Pb \rightarrow J/\psi + Pb)/dt$  for Bjorken-x range (0.3 1.4) × 10<sup>-3</sup> Large data sample expected in the LHC Run 3 + improvement in tracking from the upgrades of the ALICE detector  $\rightarrow$  should improve accuracy

### Thank you for your attention!



### Back up

## Dissociative $J/\psi$ photoproduction

• In Good-Waker formalism (<u>Heikki Mäntysaari 2020 Rep. Prog. Phys.</u> 83 082201), initial and final states are required to be different  $d\sigma^{\gamma^*p \to J/\Psi X}$  $\frac{dt}{dt} \propto \sum_{i} \sum_{f \neq i} |\langle f | A | i \rangle|^{2} = \sum_{i} \sum_{f} \langle i | A^{*} | f \rangle \langle f | A | i \rangle - \sum_{i} \langle i | A^{*} | i \rangle \langle i | A | i \rangle$  $= \sum_{i=1}^{i} \int_{i=1}^{f} \frac{i}{|A^*A|i\rangle} - \sum_{i=1}^{i} \frac{i}{|A|i\rangle|^2}$  $= \langle |A^{\gamma^* p \to J/\Psi} p|^2 \rangle - |\langle A^{\gamma^* p \to J/\Psi} p \rangle|^2$ 

Physically: we measure the fluctuations of the configurations of the proton

- The parton density increases with decreasing momentum fraction x
  - Saturation at low x?
  - More sensitive to saturation than exclusive production, since fluctuations in asymptotic limit of high energies expected to be suppressed (black disc limit) as well as (more generically) higher t and hence smaller impact parameter and hence higher density





- Black disk limit: area where the number of gluons stops increasing, fluctuations c the proton configurations are suppressed
- When the gluon occupation number is large enough, there are important nonlinear effects. These non-linearities can manifest themselves both as
  - gluon recombination (compensates) gluon radiation)
  - or as multiple interactions with an external projectile

ref: L.V. Gribov, E.M. Levin, and M.G. Ryskin, Phys. Rept. 100 (1983) 1.

QCD and hadron structure 2021 - A. Glaenzer

Saturation

$$\frac{\sigma(\gamma^*p \rightarrow J/\Psi X)}{\sigma(\gamma^*p \rightarrow J/\Psi p)}$$
of
$$1.0$$

$$0.8$$

$$0.6$$

$$0.4$$

$$0.4$$

$$W [GeV]$$
source : Heikki Mäntysaari 2020 Rep. Prog. Phys. 83 0



