

Measurements of the CKM angle γ at LHCb

Wojciech Krupa

On behalf of the LHCb collaboration

University of Science and Technology AGH - Kraków

HADRON 2021, 19th International Conference on Hadron Spectroscopy and Structure, Mexico City 26-31 July 2021

Introduction

The angle γ is one of the angles of the CKM unitarity triangle:

$$V_{CKM} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} = \begin{pmatrix} 1 - \frac{1}{2}\lambda^2 & \lambda & A\lambda^3 (\rho - i\eta) \\ -\lambda & 1 - \frac{1}{2}\lambda^2 & A\lambda^2 \\ A\lambda^3 (1 - \bar{\rho} - i\bar{\eta}) & -A\lambda^2 & 1 \end{pmatrix} + \sigma(\lambda^4)$$

Loop only measurements

27.07.2021

27.07.2021

Wojciech Krupa | Measurements of the CKM angle γ | HADRON 2021

Introduction

The angle γ is one of the angles of the CKM unitarity triangle:

- ➢ It is studied in the heavy flavour physics experiments like LHCb, BELL, KEKB and BaBar.
- ➢ It is a Charge-Parity Violation (CPV) parameter.
- ➢ It can be measured from tree-level processes only and it is a standard candle measurement in the SM.
- > Very small theoretical uncertainties associated with tree-level measurements: $\delta \gamma / \gamma = O(10^{-7})$. [JHEP 01 051]
- Discrepancy between tree-level and loop measurements can be used in probing the New Physics effects beyond the Standard Model.

$B \rightarrow DK$ decays

The CKM angle γ can be measured in processes where the interference between favoured quark transition $b \rightarrow c$ and suppressed $b \rightarrow u$ occurs.

	Method	X	$[F]_D$
B^0/B^{\pm}	ADS (mixed state)	Κ,π	[Κπ, Κπππ]
B^0/B^{\pm}	GLW (CP eigenstate)	Κ,π	[ΚΚ, ππ, ππππ]
B^0/B^{\pm}	GLS	Κ, π	[hh]
<i>B</i> ⁰	BPGGSZ	<i>K</i> *0	$[K_s^0 hh]$
B^0/B_s^0	Time-Dependent	$K, K^{*\pm}, K^{*0}$	[hhh, hh]

$$r_B = \frac{A(B \to \overline{D}K)}{A(B \to DK)}$$

$$r_D = \frac{A(D \to FX)}{A(\overline{D} \to FX)}$$

$B \rightarrow DK$ decays

Several methods of measurements of the angle γ : GLW, ADS, Dalitz plots and time-dependent.

LHCb detector

LHCb spectrometer, which is designed to study heavy flavor physics of B mesons and C mesons:

- > Covering the pseudorapidity range (2< η <5).
- \succ Identification : $ε_{h-h}$ ~90% $ε_{\mu}$ ~97%
- \geq IP resolution : σ_{IP} =20 μ m
- > Momentum resolution: $\Delta p/p=0.5-0.8$ %
- \blacktriangleright Mass resolution : $\sigma(m_{B \rightarrow hh}) \approx 22 MeV$
- Time resolution 45– 55 fs

27.07.2021

Outline

Several **new** and updated results from 2020 and 2021:

- ⇒ $B^0 \rightarrow DK^{*0}$: the new *D* decay mode: $D \rightarrow K^- \pi^- \pi^+ \pi^-$ analysis over Run 1 + 2015 and 2016 data samples
- ► $B_s^0 \rightarrow D^{\mp} K^{\pm} \pi^{\pm} \pi^{\mp}$: the time-dependent and model – independent analysis of using the full Run 1 & 2 data samples.
- $> B^+ → Dh^+, D → K_s^0 h^+ h^-$: the Run 1 & 2 analysis independent of the modelling of the D-decay amplitude.
- $> B^+ → D^{(*)}h^{\pm}$: the Run 1 & 2 simultaneous measurement of B^+ decay to D^{*0} and D^0

[LHCb-CONF-2020-003]

Wojciech Krupa | Measurements of the CKM angle γ | HADRON 2021

Updated result from 2014 over Run 1 and Run 2 data sample of 4.8 fb^{-1}

➤ Four-body (quasi-GLW):

 $B^0 \rightarrow DK^{*0}$

 $D^0 \rightarrow K^{\pm} K^{\mp}$,

 $D^0 \to K^{\pm} \pi^{\mp}$

 $D^0 \to \pi^{\pm} \pi^{\mp}$

➤ Two-body (GLW):

[JHEP 08 (2019) 041]

 D^0

 K^{*0}

 \overline{u}

cs

 V_{ub}^*

 \overline{b}

 $B^0 \rightarrow DK^{*0}$

GLW

ADS

[JHEP 08 (2019) 041]

Measurement of CP parameters:

The 2D scans of $\delta_B^{DK^{*0}}$ vs. γ and $\delta_B^{DK^{*0}}$ versus $r_B^{DK^{*0}}$

 $B_s^0 \rightarrow D_s^- h^+ \pi^+ \pi^-$

Measurement of the angle γ in $B_s^0 \rightarrow D_s^- h^+ \pi^+ \pi^-$ decay:

(Full Run 1 & 2: 9 fb^{-1} data sample)

A time-dependent amplitude analysis: the time-dependent amplitude fit using signal PDF through full-spectrum decay rate.

$\langle f | B_s^0 \rangle = A^c(x) \langle f | \overline{B_s^0} \rangle = r e^{i(\delta - \gamma)} A^u(x)$

A model-independent analysis:

(phase-space integrated decay rate) Measurement of the CP coefficients:

 $C_f, A_f^{\Delta\Gamma}, A_{\bar{f}}^{\Delta\Gamma}, S_f, S_{\bar{f}}$

 $\Delta m_s = (17.757 \pm 0.007(stat) \pm 0.008(syst))ps^{-1}$ - the most precise measurement of $\Delta m_s!$

t [ps]

 $m(D_s^{\pm}K^{\pm}\pi^{\pm}\pi^{\pm})$ [MeV]

Wojciech Krupa | Measurements of the CKM angle γ | HADRON 2021

t modulo $(2\pi/\Delta m_s)$ [ps]

 $B_s^0 \rightarrow D_s^- h^+ \pi^+ \pi^-$

12

 $B_s^0 \rightarrow D_s^- h^+ \pi^+ \pi^-$

A model-independent analysis:

A time-dependent amplitude analysis:

 $B^+ \rightarrow D^{(*)}h^+$

Misidentification

Combinatorial

 $\Lambda^0_L \to \Lambda_c h^{\pm}$

 $\rightarrow (D^* \rightarrow D\gamma)h^{\pm}$

- \blacktriangleright The Run 1 and Run 2 data sample of 8.7 fb^{-1}
- \succ Simultaneous D^0 and D^{*0} analysis with $D^{(*)}$ decay to $D\pi^0$ and $D\gamma$ and $D \to K^{\pm}\pi^{\mp}$, $D \to K^{\pm}K^{\mp}D \to \pi^{\pm}\pi^{\mp}$

 \succ Measurement of partially reconstructed $B^+ \to D^{(*)}K^+$ and $B^+ \to D^{(*)}\pi^+$ with $D \to K^{\pm}\pi^{\mp}$.

 \succ First observation of $B^+ \rightarrow (D\pi^0)_{D^*}\pi^+$ decay.

 $B^+ \rightarrow D^{(*)}h^+$

 \succ Measurement of CP parameters provide powerful constraints on the angle γ for other LHCb measurements:

 $B^+ \rightarrow Dh^+, D \rightarrow K_s^0 h^+ h^-$

 \succ The Run 1 and Run 2 data sample of 9 fb^{-1}

- > Type of 3 body D decay analysis at LHCb:
 - > Model independent method takes inputs from CLEO / BESIII experiments (smaller uncertainties and smaller sensitivity to the angle γ)
 - > Model dependent method performs an amplitude analysis of D decay (bigger uncertainties and better sensitivity of the angle γ)

> Simulataneous measurements of: γ , r_B^{DK} , δ_B^{DK} , $r_B^{D\pi}$, $\delta_B^{D\pi}$

- Dalitz plot analysis: measurement of the yield in each bin of the Dalitz plot.
- [PR D82 112006] [PR D103 Strong phase input: c_i , s_i measured by CLEO and BESIII

Optimal binning schemes for $D \to K_s^0 K^+ K^-$ decays and $D \to K_s^0 \pi^+ \pi^-$ decays.

[PR D102 052008]

 $B^+ \rightarrow Dh^+, D \rightarrow K_S^0 h^+ h^-$

27.07.2021

 $B^+ \rightarrow Dh^+, D \rightarrow K_s^0 h^+ h^-$

27.07.2021

γ combination by LHCb collaboration

[LHCb-CONF-2020-003]

- > LHCb provides several CKM angle γ measurements using different:
 - $\geq B$ meson type (B^+, B^0, B_s^0)
 - \succ Decay mode ($B^0 \rightarrow DK^{*0}$)
 - ➢ Measurement method (GLW, ADS, ...)
- > LHCb combination is in excellent agreement with the indirect determinations of $\gamma = 65^{+0.9}_{-2.7}$ ° (CKM group) and $\gamma = 65.8 \pm 2.2$ ° (UT collaboration)

Summary

- Many new and updated results of analysis over Run 1 & 2 data.
- Exploration of decays through resonance states and multi-body final states using a different methods and variety of beauty meson decays.
- Excellent results of studies of beauty to open charm processes which is good prospects for the Run 3 & 4 measurements.

Thank you for attention.

Backup

Backup: Flavour Tagging

 \succ Flavor tagging algorithms tag the candidate as B or \overline{B} (tag decision) with some efficiency and mistag probability

- Same Side (SS): correlation between flavor of the *B* meson and charge of the particle (pion, kaon, proton) produced close to the b-hadron in the PV.
- Opposite Side (OS): Correlation between flavor of the *B* meson and charged of charm meson and lepton or charge of tracks from Secondary Vertex.
- ≻ Calibrate tagging algorithm response using modes with known flavor (self-tagged, $B^+ \rightarrow J/\Psi K^+$, $B^+ \rightarrow D^0 \pi^+$).

[JHEP 08 (2019) 041]

[JHEP 08 (2019) 041]

25

27.07.2021

 $B^+ \rightarrow D^{(*)}h^+$

26

$B^+ \rightarrow Dh^+, D \rightarrow K_S^0 h^+ h^-$

 $c_i \equiv \frac{\int_i dm_-^2 dm_+^2 |A_D(m_-^2, m_+^2)| |A_D(m_+^2, m_-^2)| \cos \left[\delta_D(m_-^2, m_+^2) - \delta_D(m_+^2, m_-^2)\right]}{\sqrt{\int_i dm_-^2 dm_+^2 |A_D(m_-^2, m_+^2)|^2 \int_i dm_-^2 dm_+^2 |A_D(m_+^2, m_-^2)|^2}}$