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  is the highest mass nucleon known with .  PDG lists all   structures found above 1800 
MeV together, under the label of .  

 cannot be described within the naïve quark model.  The next  resonance after  and 
, within quark models based on the harmonic oscillator potential, is expected to appear with mass > 

2100 MeV  hadron interactions may play an important role in describing the properties of .  

It lies in the scattering region of various meson baryon coupled channels. 

Indeed, in an earlier work , we studied coupled channel meson-baryon dynamics found found two poles, with 
overlapping width,  in the  mass region (more details in the next few slides). 

In some cases three-hadron dynamics is required to understand the properties of a state (See Talks by: Alberto 
Martinez Torres on Wednesday, parallel session Analysis tools-4, 10:05 conference time; Brenda B M on 
Thursday, parallel session, Exotic hadrons and candidates-6 12:40h conference time)  

N*(1895) Jπ = 1/2− 1/2−

N*(1895)

N*(1895) S11 N*(1535)
N*(1650)

⟶ N*(1895)

N*(1895)

N*(1895): some known facts 



There is a clustering of nucleon resonances around 1890 MeV: besides,  
there exists  and . 

For example,  used to be listed as   before 2012, by the PDG.  

Several  different descriptions have been provided for a peak present around 1900 
MeV in the  total cross sections. [ PRC 61, 012201 (2000), PRD 49, 4570-4586 (1994), 
EPJA  48, 15 (2012), PRD 100, no. 5, 056008 (2019),  PRC 86, 022201 (2012), EPJA 41, 361-368 (2009), Phys. 
Lett. B 771, 142-150 (2017)]

Decay properties of  can be useful in distinguishing it from other s present 
in the same energy region.

N*(1895)
N*(1900)[3/2+] N*(1890)[1/2+]

N*(1895) N*(2090)[1/2−]

γp → K+Λ

N*(1895) N*

Motivation for further study of N*(1895)



It lies close to the threshold of . 

The branching ratio for the decay  can be significant. 

Such decay property can be important to study the photoproduction of  or 
the process , which is intended to be studied at J-PARC [H. Noumi, JPS Conf. 
Proc. 17, 111003 (2017)].  

: although it has been within different models it is still not clear if it is 
associated to one or two  poles in the complex plane.

KΛ(1405)

N*(1895) → KΛ(1405)

Λ(1405)
πN → K*πΣ

Λ(1405)

Motivation for further study of N*(1895)



Understanding the properties of hyperons is important due its implications, like, 
the existence of kaonic-nuclear bound states. 

There also exists a discussion on the existence of an isovector partner of  
[Oller, Meißner, PLB 500, 263 (2001),Guo, Oller, PRC87, 035202 (2013)Wu, Dulat, Zou, PRD 80, 017503 (2009), Wu, Dulat, Zou, 
PRC 81, 045210 (2010), Gao, Wu, Zou, PRC 81, 055203 (2010),Xie, Wu, Zou, PRC 90, 055204 (2014), Xie, Geng, PRD 95, 
074024 (2017), Roca, Oset, Phys. Rev. C 88, 055206 (2013)] 

 could decay to such a  too, and can be a useful source of 
information on it. 

Λ(1405)

N*(1895) Σ(1400)

Motivation for further study of N*(1895)



Pseudoscalar-baryon interaction (standard, lowest order chiral Lagrangian): 

 

 

 

ℒPB = ⟨B̄iγμ∂μB + B̄iγμ[Γμ, B]⟩ − MB⟨B̄B⟩ +
1
2

D′ ⟨B̄γμγ5{uμ, B}⟩ +
1
2

F′ ⟨B̄γμγ5[uμ, B]⟩

uμ = iu†∂μUu†, Γμ =
1
2 (u†∂μu + u∂μu†), U = u2 = exp (i

P
fP )

D′ = 0.8, F′ = 0.46

Our model for studying meson-baryon interactions

scattering in the systems. Toward the end of the same section, we discuss the idea of carrying

out a �
2-fit, the parameters of the fit, and the data to be considered in the fit. In Sec. III we

discuss the details on the results of the fits obtained. The properties of the resonances found

in our study are also given in Sec. III, by categorizing them in di↵erent subsections on the

basis of their spins and isospins. Finally, we present a summary of the work.

II. FORMALISM

The problem of hadron scattering gets typically more and more complex as the energy

region to be scanned involves opening of more and more thresholds to possible coupled

channels. To study hyperon resonances arising from hadron dynamics, with mass up to about

2 GeV, we implement a nonperturbative unitarization method by treating crossed-channel

dynamics perturbatively as developed in Refs. [3, 42, 43]. There is a connection with this

method and solving the Bethe-Salpeter equation for contact interactions [2, 44]. We take into

account pseudoscalar- and vector-baryon channels, motivated by the fact that the thresholds

of these channels are spread over the energy ranging from 1.25-2.2 GeV, and some of them lie

close enough to couple to each other, for exampleK⌅, K̄⇤
N . The pseudoscalar meson-baryon

interaction diagrams are deduced from the lowest order, O(p), Lagrangian [1–3, 45–48],
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with fP representing the pseudoscalar decay constant, and P (B) denoting the matrices of

the octet meson (baryon) fields:
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Vector-baryon interactions (HLS): 

 

  

 

ℒVB = − g{⟨B̄γμ [Vμ
8 , B]⟩ + ⟨B̄γμB⟩⟨Vμ

8 ⟩ +
1

4M (F⟨B̄σμν [Vμν
8 , B]⟩ + D⟨B̄σμν {Vμν

8 , B}⟩)
+⟨B̄γμB⟩⟨Vμ

0 ⟩ +
C0

4M
⟨B̄σμνV

μν
0 B⟩};

ℒV0BB = − g{⟨B̄γμB⟩⟨Vμ
0 ⟩ +

C0

4M
⟨B̄σμνV

μν
0 B⟩}, D = 2.4, F = 0.82, C0 = 3F − D

Vμν = ∂μVν − ∂νVμ + ig [Vμ, Vν]

Our model for studying meson-baryon interactions

momentum in the lth channel and Aij, Bij, Cij are isospin coe�cients for di↵erent processes.

The coe�cients Bij, Cij, for isospin 0 and 1, are listed in Tables. A1, A2, A3, and A4 in the

Appendix, where we also give the amplitudes in Eqs. (3), (4), and (5) projected on s-wave.

We refer the reader to Ref. [2] for the constants, Aij, related to the contact interactions. It

must be added here that we consider an octet baryon exchange in the s- and u-channel, thus,

the 1/2� states eventually found in the complex plane can be interpreted as those arising

from the dynamics in the system.

For the vector-baryon amplitudes, we follow the previous work [50], where the problem

was studied in detail, using a Lagrangian based on hidden local symmetry, and it was found

that s-, t-, and u-channel diagrams and a contact interaction arising from two vector field

terms give comparable contributions, and must all be considered. We take the following

Lagrangian from Ref. [50]:

LVB= �g

(
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4M
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)
,

where the subscript 8 (0) denotes the octet (singlet) part of the wave function of the vector

meson (relevant in the case of ! and �), V µ⌫ represents the tensor field of the vector mesons,

V
µ⌫ = @

µ
V

⌫
� @

⌫
V

µ + ig [V µ
, V

⌫ ] , (7)

and V
µ is the SU(3) matrix for the (physical) vector mesons,
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In Eq.(6), the coupling g is related to the vector meson decay constant, fv through the
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Lowest order amplitude is a sum of:

Our model for studying meson-baryon interactions

Vector meson-baryon dynamics and generation of resonances
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The purpose of this work is to study vector meson-octet baryon interactions with the aim to find

dynamical generation of resonances in such systems. For this, we consider s-, t-, u-channel diagrams

along with a contact interaction originating from the hidden local symmetry Lagrangian. We find the

contribution from all these sources, except the s channel, to be important. The amplitudes obtained by

solving coupled channel Bethe-Salpeter equations for systems with total strangeness zero, show the

generation of one isospin 3=2, spin 1=2 resonance and three isospin 1=2 resonances: two with spin 3=2 and
one with spin 1=2. We identify these resonances with !ð1900ÞS31, N#ð2080ÞD13, N

#ð1700ÞD13, and

N#ð2090ÞS11, respectively.

DOI: 10.1103/PhysRevD.83.114041 PACS numbers: 14.20.Gk, 11.10.St, 11.30.Ly

I. INTRODUCTION

Recent interests in hadron physics have been largely
motivated by experimental observations of new states in
the resonance region which are not easily explained by the
conventional constituent quark model. The strong interac-
tions among the ground state mesons and baryons not only
affect their properties but also, in some cases, generate
resonances dynamically (examples of some of the recent
related works are Refs. [1–10]). Therefore, it is of great
importance to investigate these dynamical aspects based on
reliable hadron-hadron interactions.

In a quark picture, an energy of several hundred MeV
which is a typical scale of one quanta of orbital excitation
is sufficient to create a "qq pair, making multiquark com-
ponents in a hadron. If they further develop color singlet
clusters of ground state hadrons near their threshold, they
may form a loosely bound or resonant state provided that
sufficiently strong attraction is available. This is what we
expect microscopically for the dynamical generation of
resonances. A spin zero configuration of "qq forms a
JP ¼ 0% pseudoscalar meson, and is the basic building
block of, for instance, #ð1405Þ [11–13]. Similarly, the
JP ¼ 1% configuration giving a vector meson could also
be an element of certain baryon resonances as indicated in
Refs. [14–19]. However, while the pseudoscalar meson-
baryon interaction is well dictated by the low energy
theorems of spontaneously broken chiral symmetry, the
interaction of vector mesons and baryons are not fully
studied. This is one of the issues that we would like to
discuss in this paper.

It is known that the theory of the hidden local symmetry
(HLS) [20] can accommodate vector mesons consistently
with the chiral symmetry. In fact, the HLS model has been

shown to share many important aspects of low energy
dynamics. Furthermore, a recent holographic approach to
QCD has derived the extended HLS model where an
infinite series of the vector mesons emerges as a conse-
quence of the dynamics in the extra fifth dimension
[21,22]. This HLS model forms the basis of our study
The vector meson-octet baryon interaction has been

studied within the HLS by assuming a vector meson ex-
change in the t channel [19] [Fig. 1(a)] as the lowest order
amplitude and several baryon resonances have been found
as a result of solving the Bethe-Salpeter equation in the
coupled channel formalism. However, in Ref. [19] all
the states are found to be spin 1=2-3=2 degenerate since
the leading order interaction obtained from the t-channel
exchange is spin independent. This latter finding is differ-
ent fromwhat one would expect from the interaction of two
particles of similar mass and nonzero spin, just as for the

P2
P1P1

P2

(a)
(b)

(c) (d)

K1 K2

P1
P2

q

K1
K2

P1 P2

K1
K2

K1
K2

FIG. 1. Diagrammatical representation of the vector meson-
baryon interaction via a (a) t-channel exchange, (b) contact term,
(c) s-channel, and (d) u-channel exchange. The double lines in
these diagrams represent the vector mesons.

*kanchan@rcnp.osaka-u.ac.jp
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Transition between the two types of channels: 

 

Extension of Kroll-Ruderman term ; replacing γ ➩ V 

ℒPBVB =
−igPBVB

2fv (F′ ⟨B̄γμγ5 [[P, Vμ], B]⟩ + D′ ⟨B̄γμγ5 {[P, Vμ], B}⟩)
γN → πN

Our model for studying meson-baryon interactions



All amplitudes are projected on s-wave and used as an input in the equation T= V+VGT 

Nonstrange coupled channels  [K. Khemchandani, A. Martínez 

Torres, H. Nagahiro and A. Hosaka, Phys. Rev. D 88, no.11, 114016 (2013)] 

-fit to reproduce, for example, the isospin 1/2 and 3/2  amplitudes extracted from partial wave 
analysis of the experimental data and the  cross sections up to a total 
energy of about 2 GeV. 

The study lead to the finding of poles associated with  and . 

Poles associated to  :   MeV and  MeV. 

πN, ηN, KΛ, KΣ, ρN, ωN, ϕN, K*Σ and K*Λ

χ2 πN
π−p → ηn and π−p → K0Λ

N*(1535), N*(1650), N*(1895) Δ(1620)

N*(1895) 1801 − i96 1912 − i54

Our model for studying meson-baryon interactions



Poles associated to  :   MeV and  MeV.  N*(1895) 1801 − i96 1912 − i54

Our model for studying meson-baryon interactions

TABLE II. Partial decay widths of N⇤(1895) ! KH
⇤. The subscripts 1, 2 on N

⇤ and on ⇤ refer

to the respective lower and upper mass poles (as shown in Table. I). It should be noted that the

partial width for N
⇤ ! K⌃ gets contribution from N

⇤+ ! K
0(+)⌃+(0). Thus, using appropriate

Clebsh-Gordon coe�cients, the partial width N
⇤ ! K⌃ is three times the value given in this Table

for N⇤+
1,2 ! K

+⌃⇤0.

Decay process Partial width (MeV)

N
⇤+
1 ! K

+⇤⇤
1 10.4± 1.3

N
⇤+
1 ! K

+⇤⇤
2 6.4± 0.8

N
⇤+
1 ! K

+⌃⇤0 3.8± 0.5

N
⇤+
2 ! K

+⇤⇤
1 1.9± 0.1

N
⇤+
2 ! K

+⇤⇤
2 1.1± 0.2

N
⇤+
2 ! K

+⌃⇤0 4.1± 0.4

poles in the complex plane. To illustrate such a superposition e↵ect, we show the K⇤ ! K⇤

amplitude in Fig. 3 obtained by summing coherently the Breit-Wigners associated with the

two N
⇤(1895) poles

tK⇤ =
g
2
N

⇤
1K⇤p

s�MN
⇤
1
+ i�N

⇤
1
/2

+
g
2
N

⇤
2K⇤p

s�MN
⇤
2
+ i�N

⇤
2
/2

, (30)

where gN⇤
1K⇤ = �0.5 � i0.6, gN⇤

2K⇤ = �0.7 + i0.3 are taken from Ref. [2] and MN
⇤
1
, MN

⇤
2
,

�N
⇤
1
, �N

⇤
2
(determined in Ref. [2] too) are as given in Table I.
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FIG. 3. Modulus squared amplitudes related to N
⇤
1 (dotted line), N

⇤
2 (dashed line) and their

interference (solid line), which produces a unique peak, in this case, around 1900 MeV.
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where gN⇤
1K⇤ = �0.5 � i0.6, gN⇤

2K⇤ = �0.7 + i0.3 are taken from Ref. [2] and MN
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Coupled channels:  [Phys. Rev. C 100, 015208 (2019)] 

Following data were considered to constrain the parameters: 

Total cross sections on (175 data points)  (Landolt and Börsntein, Numerical 
data and Functional Relationships in Science and Technology) 

Kaonic hydrogen (Siddharta collaboration) ∆E = 283±36±6 eV and Γ = 549±89±22 eV (M. Bazzi et al., PLB 704, 113 (2011)) 

Cross section ratios near threshold  

K̄N, KΞ, πΣ, ηΛ, πΛ, ηΣ, K̄*N, K*Ξ, ρΣ, ωΛ, ϕΛ, ρΛ, ωΣ, ϕΣ

K−p → K−p, K̄0n, ηΛ, π0Λ, π0Σ0, π±Σ∓

Light hyperons from our model:

, 

 

γ =
σ (K−p → π+Σ−)
σ (K−p → π−Σ+)

= 2.36 ± 0.12

Rc =
σ (K−p → charged particles)

σ (K−p → all)
= 0.664 ± 0.033,

Rn =
σ (K−p → π0Λ)

σ (K−p → all neutral states)
= 0.189 ± 0.015,



Light hyperons from our 
model:
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FIG. 1. Cross sections of di↵erent processes studied in our work. The shaded region represents the

results found with the parameters listed under the label Fit I, in Table I. Data shown as (red) filled

circles (taken from Refs. [61–67]) were used in the �2 fitting procedure explained in the text.
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Types of fits obtained:

For completeness, we give in Table VII the K
�
p scattering length, determined from

Eq. (14), as well as the scattering lengths associated with the K̄N system in isospins I = 0 and

I = 1, respectively. The value found for the K
�
p scattering length is in agreement with the

one obtained using directly the SIDDHARTA data, aK�p = (�0.65± 0.10) + i (0.81± 0.15)

fm, by means of Eq. (13), and with the result of Ref. [93] from Kaonic hydrogen x rays,

aK�p = (�0.78± 0.15± 0.03) + i (0.49± 0.25± 0.12) fm.

TABLE VII. Scattering lengths for K�p and K̄N in isospin 0 and 1, respectively (all units are in

fm).

Fit I Fit II

aK�p �0.74+0.01
�0.02 + i 0.69+0.02

�0.01 �0.74+0.07
�0.02 + i 0.73+0.03

�0.08

a0
K̄N

�1.58+0.03
�0.03 + i 0.87+0.02

�0.03 �1.60+0.03
�0.01 + i 0.89+0.04

�0.13

a1
K̄N

0.09+0.02
�0.02 + i 0.50+0.04

�0.02 0.12+0.10
�0.04 + i 0.55+0.02

�0.04

IV. SUMMARY AND OUTLOOK

A simultaneous fit to several relevant data has been made to study hyperon reso-

nances. Low-lying hyperon resonances have been studied earlier in several works, by

solving pseudoscalar-baryon coupled-channel scattering equations. We have included both

pseudoscalar- and vector-baryon dynamics and find that the properties of the widely known

hyperons, like, ⇤(1405), are well reproduced. The formalism used in the previous work on this

topic [37] has been extended by including s- and u-channel diagrams to study pseudoscalar-

baryon interactions. We find that an isospin 1 state, around 1400 MeV, also exists, though

it is not clear if it is related to one or two poles in the complex plane. The data fitted in

the present work are related to the production of pseudoscalar-baryon channels. Still the

cross sections at somewhat higher energies are found to follow the data, in one of the two

31

Scattering length from Siddharta data  
 fmaK−p = (−0.65 ± 0.10) + i (0.81 ± 0.15)

Model results:

• K. P. Khemchandani, A. Martínez Torres, and 
J. A. Oller Phys. Rev. C 100, 015208 (2019)



Two poles were obtained for :    MeV and  MeV  

Comparison with other works: 

CLAS analysis of electroproduction data; poles ~1368 MeV, ~1423 MeV 

Mai, Meißner, EPJA51,30 (2015)  
       MeV,   and     MeV 

Roca, Oset, PRC 88, 055206 (2013).  
              MeV,    MeV 

In addition to the  pole, a state was also found in the isovector case at  MeV. We shall refer to this 
state as .
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LN!PB ¼ igPBN!B̄N!P†;

LN!VB ¼ −i
gVBN!

ffiffiffi
3

p B̄γ5γμN!Vμ† ;

LPBH! ¼ gPBH!PH̄!B;

LVBH! ¼ i
gVBH!

ffiffiffi
3

p VμH̄!γμγ5B: ð4Þ

236237 The field H! in Eqs. (4) represents Σð1400Þ or Λð1405Þ,
238 and the couplings gPBN! , gVBN! , gPBH! , gVBH! are taken
239 from Refs. [2,30]. The factor

ffiffiffi
3

p
in the Lagrangians for the

240 vertices involving a vector meson is due to the fact that the
241 Breit-Wigner amplitudes in Refs. [2,30], for spin 1=2 of the
242 VB system, are written in terms of the gVBB! couplings as

TVB→B!→V0B0 ≡ ðigVBB! Þ 1ffiffiffi
s

p
−MB! þ iΓB!=2

ð−igV0B0B! Þ:

ð5Þ

243244 Note that Eq. (4) leads to a spin dependent VB → VB
245 amplitude

TVB→B!→V0B0 ¼ 1

3

g2VBB!ffiffiffi
s

p
−MB! þ iΓB!=2

σ⃗ · ϵ⃗2σ⃗ · ϵ⃗1; ð6Þ

246247 such that, when projected on spin 1=2, it becomes

Ts¼1=2
VB→B!→V0B0 ¼

g2VBB!ffiffiffi
s

p
−MB! þ iΓB!=2

; ð7Þ

248249 in agreement with Eq. (5).
250 Having discussed the Lagrangians for the different
251 vertices necessary to describe the decay of N!ð1895Þ to
252 KþH!0, we can now start calculating the amplitudes for the
253 different diagrams shown in Fig. 1. We begin by writing the
254 amplitude for the diagram in Fig. 1(a)
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Vj
Þ

q2 −m2
Vj þ iϵ

ð2k − qÞμ
ðk − qÞ2 −m2

Pj þ iϵ

#
uN! ðPÞ; ð8Þ

255256where we have followed the four momentum attribution
257shown in Fig. 2. The summation over the index j, in Eq. (8),
258refers to considering different three hadron channels in the
259triangle loop which can contribute to the diagram in
260Fig. 1(a). The list of such three-hadrons channels is given
261in Table IV in the Appendix A. Further, the constant Cj in
262Eq. (8) is a coefficient obtained by performing the trace in
263Eq. (2) for the VPP vertex and mBj, mVj, mPj are the
264masses of the baryon, vector, and pseudoscalar meson,
265respectively, corresponding to the jth channel in the
266triangular loop. The values of the Cj coefficients are also
267given in Table IV in the Appendix A for each three-hadron
268loop present in the diagram of Fig. 1(a).
269The product of the spinors, gamma matrices, and the
270numerator of the expression within the curly brackets in
271Eq. (8) can be worked out as

272273

NaðqÞ ¼ ð4k · p − 2p · q − q2ÞūH! ðpÞγ5uN! ðPÞ − 2ðMH! þmBjÞūH! ðpÞ=kγ5uN! ðPÞ

× ðMH! þmBjÞūH!ðpÞ=qγ5uN! ðPÞ þ 2ūH!ðpÞ=k=qγ5uN!ðPÞ þ
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2k · q − q2

m2
vj

%

× ½ðMH! þmBjÞūH!ðpÞ=qγ5uN! ðPÞ − ð2p · qþ q2ÞūH! ðpÞγ5uN!ðPÞ'; ð9Þ

274275 withMH! denoting the mass ofH!. The integration on dq0 in Eq. (8) can be done analytically by using Cauchy’s theorem. It
276 is then convenient to rewrite Eq. (9) showing its explicit dependence on q0. By doing so Eq. (8) becomes
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vj þ iϵ'½ðk − qÞ2 −m2
pj þ iϵ'

; ð10Þ

277278 where χ†, χ correspond to the two-component spinors of H! and N!, respectively. The factors NH! , N N! in Eq. (10) are
279 related to the normalization of the Dirac spinors for H! and N!
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248249 in agreement with Eq. (5).
250 Having discussed the Lagrangians for the different
251 vertices necessary to describe the decay of N!ð1895Þ to
252 KþH!0, we can now start calculating the amplitudes for the
253 different diagrams shown in Fig. 1. We begin by writing the
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255256where we have followed the four momentum attribution
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258refers to considering different three hadron channels in the
259triangle loop which can contribute to the diagram in
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262Eq. (8) is a coefficient obtained by performing the trace in
263Eq. (2) for the VPP vertex and mBj, mVj, mPj are the
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265respectively, corresponding to the jth channel in the
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242 VB system, are written in terms of the gVBB! couplings as
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248249 in agreement with Eq. (5).
250 Having discussed the Lagrangians for the different
251 vertices necessary to describe the decay of N!ð1895Þ to
252 KþH!0, we can now start calculating the amplitudes for the
253 different diagrams shown in Fig. 1. We begin by writing the
254 amplitude for the diagram in Fig. 1(a)
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255256where we have followed the four momentum attribution
257shown in Fig. 2. The summation over the index j, in Eq. (8),
258refers to considering different three hadron channels in the
259triangle loop which can contribute to the diagram in
260Fig. 1(a). The list of such three-hadrons channels is given
261in Table IV in the Appendix A. Further, the constant Cj in
262Eq. (8) is a coefficient obtained by performing the trace in
263Eq. (2) for the VPP vertex and mBj, mVj, mPj are the
264masses of the baryon, vector, and pseudoscalar meson,
265respectively, corresponding to the jth channel in the
266triangular loop. The values of the Cj coefficients are also
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× ½ðMH! þmBjÞūH!ðpÞ=qγ5uN! ðPÞ − ð2p · qþ q2ÞūH! ðpÞγ5uN!ðPÞ'; ð9Þ
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236237 The field H! in Eqs. (4) represents Σð1400Þ or Λð1405Þ,
238 and the couplings gPBN! , gVBN! , gPBH! , gVBH! are taken
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in the Lagrangians for the

240 vertices involving a vector meson is due to the fact that the
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257shown in Fig. 2. The summation over the index j, in Eq. (8),
258refers to considering different three hadron channels in the
259triangle loop which can contribute to the diagram in
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261in Table IV in the Appendix A. Further, the constant Cj in
262Eq. (8) is a coefficient obtained by performing the trace in
263Eq. (2) for the VPP vertex and mBj, mVj, mPj are the
264masses of the baryon, vector, and pseudoscalar meson,
265respectively, corresponding to the jth channel in the
266triangular loop. The values of the Cj coefficients are also
267given in Table IV in the Appendix A for each three-hadron
268loop present in the diagram of Fig. 1(a).
269The product of the spinors, gamma matrices, and the
270numerator of the expression within the curly brackets in
271Eq. (8) can be worked out as

272273

NaðqÞ ¼ ð4k · p − 2p · q − q2ÞūH! ðpÞγ5uN! ðPÞ − 2ðMH! þmBjÞūH! ðpÞ=kγ5uN! ðPÞ

× ðMH! þmBjÞūH!ðpÞ=qγ5uN! ðPÞ þ 2ūH!ðpÞ=k=qγ5uN!ðPÞ þ
$
2k · q − q2

m2
vj

%

× ½ðMH! þmBjÞūH!ðpÞ=qγ5uN! ðPÞ − ð2p · qþ q2ÞūH! ðpÞγ5uN!ðPÞ'; ð9Þ

274275 withMH! denoting the mass ofH!. The integration on dq0 in Eq. (8) can be done analytically by using Cauchy’s theorem. It
276 is then convenient to rewrite Eq. (9) showing its explicit dependence on q0. By doing so Eq. (8) becomes

ta ¼ i
X

j

gVBH!;jgPBN!;jgPPVN H!N N!Cj

Z
d4q
ð2πÞ4

"
χ†
$X4

i¼0

Ai;j½q0'i
%
χ

#

×
1

½ðP − kþ qÞ2 −m2
Bj þ iϵ'½q2 −m2

vj þ iϵ'½ðk − qÞ2 −m2
pj þ iϵ'

; ð10Þ

277278 where χ†, χ correspond to the two-component spinors of H! and N!, respectively. The factors NH! , N N! in Eq. (10) are
279 related to the normalization of the Dirac spinors for H! and N!
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k
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the curly brackets in Eq. (8) can be worked out as

Na (q) =
�
4 k · p� 2 p · q � q

2
�
ūH⇤(p) �5uN⇤(P )� 2 (MH⇤ +mBj) ūH⇤(p) /k�5uN⇤(P )

(MH⇤ +mBj) ūH⇤(p) /q�5uN⇤(P ) + 2 ūH⇤(p) /k/q�5uN⇤(P ) +

✓
2 k · q � q

2

m
2
vj

◆

⇥
h
(MH⇤ +mBj) ūH⇤(p) /q�5uN⇤(P )�

�
2 p · q + q

2
�
ūH⇤(p) �5uN⇤(P )

i
, (9)

withMH⇤ denoting the mass ofH⇤. The integration on dq
0 in Eq. (8) can be done analytically

by using Cauchy’s theorem. It is then convenient to rewrite Eq. (9) showing its explicit

dependence on q
0. By doing so Eq. (8) becomes

ta = i

X

j

gV BH⇤,j gPBN⇤,j gPPVNH⇤NN⇤Cj

Z
d
4
q

(2⇡)4

(
�
†
⇣ 4X

i=0

Ai,j[q
0]i
⌘
�

)

⇥ 1⇥
(P � k + q)2 �m

2
Bj

+ i✏
⇤⇥
q2 �m

2
vj
+ i✏

⇤⇥
(k � q)2 �m

2
pj
+ i✏

⇤, (10)

where �
†, � correspond to the two-component spinors of H⇤ and N

⇤, respectively. The

factors NH⇤ , NN⇤ in Eq. (10) are related to the normalization of the Dirac spinors for H⇤

and N
⇤

NH⇤ =

r
EH⇤ +MH⇤

2MH⇤
, NN⇤ =

r
EN⇤ +MN⇤

2MN⇤
, (11)

where, although, NN⇤ is unity in the centre of mass frame we still keep it in the equations for

completeness. The definitions of Ai,j’s are as given below. The subscript i on Ai,j refers to

the power of q0 multiplied to Ai,j and the index j indicates the three-hadron channel in the

loop. Defining the four-momenta in the centre of mass frame as: P = (
p
s, 0), k = (k0

,~k),

p = (
p
s� k

0
,�~k) and q = (q0, ~q ), we can write the expressions for Ai,j as

A0,j = ~� · ~k
(
2 (MH⇤ +mBj) +

1

EH⇤ +MH⇤

"
2k0 (MH⇤ +mBj + 2EH⇤)� 2~k · ~q + | ~q |2 + 4| ~k |2

+
| ~q |4 + 4

⇣
~k · ~q

⌘2
� 4

⇣
~k · ~q

⌘
| ~q |2

m
2
vj

3

75

9
>=

>;
� ~� · ~q

(
(MH⇤ +mBj)

 
1� 2~k · ~q � | ~q |2

m
2
vj

!

+ 2k0 + 2
| ~k |2

EH⇤ +MH⇤

)
, (12)
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LN!PB ¼ igPBN!B̄N!P†;

LN!VB ¼ −i
gVBN!

ffiffiffi
3

p B̄γ5γμN!Vμ† ;

LPBH! ¼ gPBH!PH̄!B;

LVBH! ¼ i
gVBH!

ffiffiffi
3

p VμH̄!γμγ5B: ð4Þ

236237 The field H! in Eqs. (4) represents Σð1400Þ or Λð1405Þ,
238 and the couplings gPBN! , gVBN! , gPBH! , gVBH! are taken
239 from Refs. [2,30]. The factor

ffiffiffi
3

p
in the Lagrangians for the

240 vertices involving a vector meson is due to the fact that the
241 Breit-Wigner amplitudes in Refs. [2,30], for spin 1=2 of the
242 VB system, are written in terms of the gVBB! couplings as

TVB→B!→V0B0 ≡ ðigVBB! Þ 1ffiffiffi
s

p
−MB! þ iΓB!=2

ð−igV0B0B! Þ:

ð5Þ

243244 Note that Eq. (4) leads to a spin dependent VB → VB
245 amplitude

TVB→B!→V0B0 ¼ 1

3

g2VBB!ffiffiffi
s

p
−MB! þ iΓB!=2

σ⃗ · ϵ⃗2σ⃗ · ϵ⃗1; ð6Þ

246247 such that, when projected on spin 1=2, it becomes

Ts¼1=2
VB→B!→V0B0 ¼

g2VBB!ffiffiffi
s

p
−MB! þ iΓB!=2

; ð7Þ

248249 in agreement with Eq. (5).
250 Having discussed the Lagrangians for the different
251 vertices necessary to describe the decay of N!ð1895Þ to
252 KþH!0, we can now start calculating the amplitudes for the
253 different diagrams shown in Fig. 1. We begin by writing the
254 amplitude for the diagram in Fig. 1(a)

ta ¼ i
X

j

gVBH!;jgPBN!;jgPPVCjūH! ðpÞγνγ5

×
Z

d4q
ð2πÞ4

" ð=P − =kþ =qþmBjÞ
ðP − kþ qÞ2 −m2

Bj þ iϵ

×
ð−gνμ þ qνqμ

m2
Vj
Þ

q2 −m2
Vj þ iϵ

ð2k − qÞμ
ðk − qÞ2 −m2

Pj þ iϵ

#
uN! ðPÞ; ð8Þ

255256where we have followed the four momentum attribution
257shown in Fig. 2. The summation over the index j, in Eq. (8),
258refers to considering different three hadron channels in the
259triangle loop which can contribute to the diagram in
260Fig. 1(a). The list of such three-hadrons channels is given
261in Table IV in the Appendix A. Further, the constant Cj in
262Eq. (8) is a coefficient obtained by performing the trace in
263Eq. (2) for the VPP vertex and mBj, mVj, mPj are the
264masses of the baryon, vector, and pseudoscalar meson,
265respectively, corresponding to the jth channel in the
266triangular loop. The values of the Cj coefficients are also
267given in Table IV in the Appendix A for each three-hadron
268loop present in the diagram of Fig. 1(a).
269The product of the spinors, gamma matrices, and the
270numerator of the expression within the curly brackets in
271Eq. (8) can be worked out as

272273

NaðqÞ ¼ ð4k · p − 2p · q − q2ÞūH! ðpÞγ5uN! ðPÞ − 2ðMH! þmBjÞūH! ðpÞ=kγ5uN! ðPÞ

× ðMH! þmBjÞūH!ðpÞ=qγ5uN! ðPÞ þ 2ūH!ðpÞ=k=qγ5uN!ðPÞ þ
$
2k · q − q2

m2
vj

%

× ½ðMH! þmBjÞūH!ðpÞ=qγ5uN! ðPÞ − ð2p · qþ q2ÞūH! ðpÞγ5uN!ðPÞ'; ð9Þ

274275 withMH! denoting the mass ofH!. The integration on dq0 in Eq. (8) can be done analytically by using Cauchy’s theorem. It
276 is then convenient to rewrite Eq. (9) showing its explicit dependence on q0. By doing so Eq. (8) becomes

ta ¼ i
X

j

gVBH!;jgPBN!;jgPPVN H!N N!Cj

Z
d4q
ð2πÞ4

"
χ†
$X4

i¼0

Ai;j½q0'i
%
χ

#

×
1

½ðP − kþ qÞ2 −m2
Bj þ iϵ'½q2 −m2

vj þ iϵ'½ðk − qÞ2 −m2
pj þ iϵ'

; ð10Þ

277278 where χ†, χ correspond to the two-component spinors of H! and N!, respectively. The factors NH! , N N! in Eq. (10) are
279 related to the normalization of the Dirac spinors for H! and N!
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Numerical integration; 600-700 MeV Λ =

A1,j = �~� · ~q
⇢
2k0 (MH⇤ +mBj)

m
2
vj

�
+ ~� · ~k

(
2 +

2k0 � 2EH⇤ �MH⇤ �mBj

EH⇤ +MH⇤

+

✓
2k0 �MH⇤ �mBj � 2EH⇤

EH⇤ +MH⇤

◆ 
�2~k · ~q + |~q|2

m
2
vj

!)
, (13)

A2,j =
~� · ~k

EH⇤ +MH⇤

⇢
�1� 1

m
2
vj

h
4k0

EH⇤ + 2k0(MH⇤ +mBj) + 2
⇣
�2~k · ~q + |~q|2

⌘i�

+ ~� · ~q (MH⇤ +mBj)

m
2
vj

, (14)

A3,j =
~� · ~k

EH⇤ +MH⇤

⇢
�2k0 + 2EH⇤ +mBj +MH⇤

m
2
vj

�
(15)

and

A4,j =
~� · ~k

(EH⇤ +MH⇤)m2
vj

. (16)

The integration on the q
0 variable can be done analytically, to obtain an expression like

ta =i

X

j

gV BH⇤,j gPBN⇤,j gPPV CjNH⇤NN⇤

Z
d⌦q

⇤Z

0

d| ~q |
(2⇡)3

| ~q |2
4X

i=0

�
†
h
Ai,j( ~q )

i
�

⇥
✓
�iNi,j( ~q )

Dj( ~q )

◆
, (17)

with

�iNi,j( ~q )

Dj( ~q )
⌘
Z

dq
0

(2⇡)

(q0)i⇥
(P � k + q)2 �m

2
Bj

+ i✏
⇤ ⇥

q2 �m
2
vj
+ i✏

⇤ ⇥
(k � q)2 �m

2
pj
+ i✏

⇤ .

(18)

A cut-o↵ ⇤ ' 600 � 700 MeV is used in the integration on the three-momentum to be

consistent with the work in Refs. [2, 30]. The variation of ⇤ in this range allows us to

estimate the uncertainties of our results. The analytical expressions for Ni,j and Dj are

given in the Appendix B.

To proceed further, we recall that the decay N
⇤ ! K

+
H

⇤ occurs in p-wave and we, thus,

need to write the final state projected on the partial wave l=1. Following Ref. [34], we write

a state of two particles with spins S1, S2, with the centre of mass momentum ~k, projected

on a partial wave l as

| k, lS, Jµi = 1p
4⇡

Z
dk̂

X

m1,m2

C (S1, S2, S | m1,m2,M)C (l, S, J | µ�M,M, µ)Yl(µ�M)

⇣
k̂

⌘

⇥ | ~k, S1S2,m1m2i, (19)

10

A1,j = �~� · ~q
⇢
2k0 (MH⇤ +mBj)
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2
vj

�
+ ~� · ~k

(
2 +

2k0 � 2EH⇤ �MH⇤ �mBj

EH⇤ +MH⇤

+

✓
2k0 �MH⇤ �mBj � 2EH⇤

EH⇤ +MH⇤

◆ 
�2~k · ~q + |~q|2
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2
vj

!)
, (13)
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⇢
�1� 1

m
2
vj

h
4k0

EH⇤ + 2k0(MH⇤ +mBj) + 2
⇣
�2~k · ~q + |~q|2

⌘i�

+ ~� · ~q (MH⇤ +mBj)
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2
vj

, (14)
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~� · ~k

EH⇤ +MH⇤

⇢
�2k0 + 2EH⇤ +mBj +MH⇤

m
2
vj

�
(15)

and

A4,j =
~� · ~k

(EH⇤ +MH⇤)m2
vj

. (16)

The integration on the q
0 variable can be done analytically, to obtain an expression like

ta =i

X

j

gV BH⇤,j gPBN⇤,j gPPV CjNH⇤NN⇤
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d⌦q

⇤Z

0

d| ~q |
(2⇡)3

| ~q |2
4X

i=0

�
†
h
Ai,j( ~q )

i
�

⇥
✓
�iNi,j( ~q )

Dj( ~q )

◆
, (17)

with

�iNi,j( ~q )

Dj( ~q )
⌘
Z

dq
0

(2⇡)

(q0)i⇥
(P � k + q)2 �m

2
Bj

+ i✏
⇤ ⇥

q2 �m
2
vj
+ i✏

⇤ ⇥
(k � q)2 �m

2
pj
+ i✏

⇤ .

(18)

A cut-o↵ ⇤ ' 600 � 700 MeV is used in the integration on the three-momentum to be

consistent with the work in Refs. [2, 30]. The variation of ⇤ in this range allows us to

estimate the uncertainties of our results. The analytical expressions for Ni,j and Dj are

given in the Appendix B.

To proceed further, we recall that the decay N
⇤ ! K

+
H

⇤ occurs in p-wave and we, thus,

need to write the final state projected on the partial wave l=1. Following Ref. [34], we write

a state of two particles with spins S1, S2, with the centre of mass momentum ~k, projected

on a partial wave l as

| k, lS, Jµi = 1p
4⇡

Z
dk̂

X

m1,m2

C (S1, S2, S | m1,m2,M)C (l, S, J | µ�M,M, µ)Yl(µ�M)

⇣
k̂

⌘

⇥ | ~k, S1S2,m1m2i, (19)
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III. RESULTS AND DISCUSSIONS

Having obtained the amplitudes for the diagrams shown in Fig. 1 for the processes N⇤+ !

K
+⌃⇤0 and N

⇤+ ! K
+⇤⇤, we calculate the corresponding partial decay widths as

�N⇤!KH⇤ =
1

32⇡2

| ~p | (4MH⇤MN⇤)

M
2
N⇤

1

2SN⇤ + 1

Z
d⌦

X

mN⇤ ,mH⇤

|tN⇤!KH⇤ |2, (27)

where H
⇤ denotes the hyperon resonance, ⌃⇤ or ⇤⇤.

For the sake of clarity in the presentations of the results, we represent the two poles of

N
⇤(1895) found in Ref. [2] as N⇤

1 (1895) (for the lower pole at 1801� i96 MeV) and N
⇤
2 (1895)

(for the higher pole at 1912 � i54 MeV). Similarly, we shall refer to the lower and upper

mass poles of ⇤(1405) (see Table I) as ⇤1(1405) and ⇤2(1405), respectively.

Before discussing the results, it is important to mention that although the central mass

value of N⇤
1 (1895) is below the H⇤-kaon threshold(s), the decay width N

⇤
1 ! K

+
H

⇤ is finite,

due to the width of N⇤
1 (1895) (see Table I), which can be taken into account through the

convolution of the width [given by Eq. (27)] over the varying mass of N⇤ as

�N⇤!KH⇤ =
1

N

(MN⇤+2�N⇤ )2Z

(MN⇤�2�N⇤ )2

dm̃
2

✓
� 1

⇡

◆
Im

⇢
1

m̃2 �M
2
N⇤ + iMN⇤�N⇤

�
�N⇤!KH⇤(m̃). (28)

In Eq. (28), �N⇤!KH⇤(m̃) is calculated using Eq. (27), with the mass of N⇤ varying in the

range ± 2�N⇤ , and

N =

(MN⇤+2�N⇤ )2Z

(MN⇤�2�N⇤ )2

dm̃
2

✓
� 1

⇡

◆
Im

⇢
1

m̃2 �M
2
N⇤ + iMN⇤�N⇤

�
, (29)

is a normalization factor. As a result we obtain the widths which are summarised in Ta-

ble. II. The uncertainty in the results is determined by allowing the cut-o↵, ⇤, on the

three-momentum integration to vary in the range 600 � 700 MeV. We refer the reader to

Eq. (17) to look for the dependence on ⇤ in the formalism. We would like to add here that

the H⇤’s also have finite decay widths, which we considered analogously to the way we take

into account the width of N⇤. We find that the widths of H⇤’s do not practically change

the results in Table II.

Further, it might be useful, from the experimental point of view, to provide the partial

width ofN⇤(1895) as a state on the real energy axis, produced by the superposition of the two

13



Decay of N*(1895) to light hyperons344 coherent sum of the amplitudes for the three diagrams in
345 Fig. 1

tN!→KH! ¼ hk; l ¼ 1; SΣ! ; SN! jtajSN! ; mN!i
þ hk; l ¼ 1; SΣ! ; SN! jtbjSN! ; mN!i
þ hk; l ¼ 1; SΣ! ; SN! jtcjSN! ; mN!i: ð26Þ

346347
348 III. RESULTS AND DISCUSSIONS

349 Having obtained the amplitudes for the diagrams
350 shown in Fig. 1 for the processes N!þ → KþΣ!0 and
351 N!þ → KþΛ!, we calculate the corresponding partial
352 decay widths as

ΓN!→KH! ¼ 1

32π2
jp⃗jð4MH!MN!Þ

M2
N!

1

2SN! þ 1

×
Z

dΩ
X

mN! ;mH!

jtN!→KH! j2; ð27Þ

353354 where H! denotes the hyperon resonance, Σ! or Λ!.
355 For the sake of clarity in the presentations of the results,
356 we represent the two poles of N!ð1895Þ found in Ref. [2]
357 as N!

1ð1895Þ (for the lower pole at 1801 − i96 MeV)
358 and N!

2ð1895Þ (for the higher pole at 1912 − i54 MeV).
359 Similarly, we shall refer to the lower and upper mass
360 poles of Λð1405Þ (see Table I) as Λ1ð1405Þ and Λ2ð1405Þ,
361 respectively.
362 Before discussing the results, it is important to mention
363 that although the central mass value of N!

1ð1895Þ is below
364 the H!-kaon threshold(s), the decay width N!

1 → KþH! is
365 finite, due to the width ofN!

1ð1895Þ (see Table I), which can
366 be taken into account through the convolution of the width
367 [given by Eq. (27)] over the varying mass of N! as

ΓN!→KH! ¼ 1

N

Z
ðMN!þ2ΓN! Þ2

ðMN!−2ΓN! Þ2
dm̃2

!
−
1

π

"

× Im
#

1

m̃2 −M2
N! þ iMN!ΓN!

$
ΓN!→KH! ðm̃Þ:

ð28Þ

368369 In Eq. (28), ΓN!→KH!ðm̃Þ is calculated using Eq. (27), with
370 the mass of N! varying in the range &2ΓN! , and

N ¼
Z

ðMN!þ2ΓN! Þ2

ðMN!−2ΓN! Þ2
dm̃2

!
−
1

π

"
Im

#
1

m̃2−M2
N! þ iMN!ΓN!

$
;

ð29Þ

371372 is a normalization factor. As a result we obtain the widths
373 which are summarized in Table. II. The uncertainty in the
374 results is determined by allowing the cutoff,Λ, on the three-
375 momentum integration to vary in the range 600–700 MeV.
376 We refer the reader to Eq. (17) to look for the dependence

377on Λ in the formalism. We would like to add here that the
378H!’s also have finite decay widths, which we considered
379analogously to the way we take into account the width of
380N!. We find that the widths of H! ’s do not practically
381change the results in Table II.
382Further, it might be useful, from the experimental point
383of view, to provide the partial width of N!ð1895Þ as a state
384on the real energy axis, produced by the superposition of
385the two poles in the complex plane. To illustrate such a
386superposition effect, we show the KΛ → KΛ amplitude in
387Fig. 3 obtained by summing coherently the Breit-Wigners
388associated with the two N!ð1895Þ poles

tKΛ ¼
g2N!

1KΛffiffiffi
s

p
−MN!

1
þ iΓN!

1
=2

þ
g2N!

2KΛffiffiffi
s

p
−MN!

2
þ iΓN!

2
=2

; ð30Þ

389390where gN!
1KΛ ¼ −0.5 − i0.6, gN!

2KΛ ¼ −0.7þ i0.3 are

391taken from Ref. [2] and MN!
1
, MN!

2
, ΓN!

1
, ΓN!

2
(determined

392in Ref. [2] too) are as given in Table I.
393To determine the decay width of N!ð1895Þ to
394KþΣ0ð1400Þ, where N!ð1895Þ is now the superposition

TABLE II. Partial decay widths of N!ð1895Þ → KH!. The
subscripts 1, 2 on N! and on Λ refer to the respective lower and
upper mass poles (as shown in Table. I). It should be noted that
the partial width for N! → KΣ gets contribution from
N!þ → K0ðþÞΣþð0Þ. Thus, using appropriate Clebsh-Gordon co-
efficients, the partial width N! → KΣ is three times the value
given in this Table for N!þ

1;2 → KþΣ!0.

Decay process Partial width (MeV)

N!þ
1 → KþΛ!

1 10.4& 1.3
N!þ

1 → KþΛ!
2 6.4& 0.8

N!þ
1 → KþΣ!0 3.8& 0.5

N!þ
2 → KþΛ!

1 1.9& 0.1
N!þ

2 → KþΛ!
2 1.1& 0.2

N!þ
2 → KþΣ!0 4.1& 0.4

T
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F3:1FIG. 3. Modulus squared amplitudes related to N!
1 (dotted line),

F3:2N!
2 (dashed line) and their interference (solid line), which

F3:3produces a unique peak, in this case, around 1900 MeV.
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395 of N!
1ð1895Þ and N!

2ð1895Þ, we proceed in the following
396 way: we sum the amplitudes for N!þ

1;2 → KþΣ0ð1400Þ and
397 use an average mass of approximately 1895 MeVand width
398 of approximately 120 MeV for N!ð1895Þ in the phase
399 space. These values correspond to the peak position and full
400 width at the half maximum, respectively, found in the
401 squared amplitudes on the real axis for most channels in
402 Ref. [2]. As a result, we obtain

ΓN!þð1895Þ→KþΣ0ð1400Þ ¼ ð6.3& 0.5Þ MeV; ð31Þ

403404 Br½N!þð1895Þ → KþΣ0ð1400Þ( ¼ ð5.3& 0.4Þ%; ð32Þ

405406 with “Br” representing the branching fraction. As men-
407 tioned in the caption of Table II, we should keep in mind
408 that the partial width for N! → KΣ gets contribution from
409 N!þ → K0ðþÞΣþð0Þ. The partial width N! → KΣ is, then,
410 three times the value for N!þ → KþΣ0ð1400Þ.
411 In case of the decay toKþΛð1405Þ, we sumthe amplitudes
412 N!þ

1 ð1895Þ→KþΛ1ð1405Þ, N!þ
1 ð1895Þ → KþΛ2ð1405Þ,

413 N!þ
2 ð1895Þ → KþΛ1ð1405Þ, and N!þ

2 ð1895Þ →
414 KþΛ2ð1405Þ. A mass value of 1405 MeV is used for
415 Λð1405Þ in the phase space. Further, as in the calcula-
416 tion of the partial width of N!ð1895Þ → KþΣ0ð1400Þ, an
417 average mass and width for N!ð1895Þ have been considered
418 in the calculation of the phase space. The values, thus,
419 obtained are

ΓN!þð1895Þ→KþΛð1405Þ ¼ ð8.3& 1.3Þ MeV; ð33Þ

420421 Br½N!þð1895Þ → KþΛð1405Þ( ¼ ð6.9& 1.1Þ%: ð34Þ

422423 The branching fractions to KH! provided in our work
424 indicate that processes, like, the photoproduction of
425 KΛð1405Þ can be a useful source of information on
426 the properties of N!ð1895Þ, in addition to the processes
427 with KΛ, KΣ final states considered usually [10–12,35]. In
428 case of the latter processes, contributions from both
429 N!ð1895Þ and N!ð1900Þ (Jπ ¼ 3=2þ) present difficulties
430 in analyzing their properties. However, in the process with
431 KΛð1405Þ final state, the contribution of N!ð1900Þ may be
432 suppressed since a d-wave interaction is required in the
433 final state.
434 Next, in Table III we provide the branching ratios for
435 each of the two poles of N!ð1895Þ to different PB and VB
436 channels in the isospin base and compare them with the
437 experimental values, whenever possible. We calculate the
438 N! → PB, VB decay widths as

ΓN!→PBðVBÞ ¼
jp⃗j
4π

MB

MN!
jgN!→PBðVBÞj2; ð35Þ

439440 and convolute over the width of N! by using Eq. (35) in
441 Eq. (28). As can be seen, we obtain compatible results.
442 Notice that the last column of Table III is a compilation of

443findings from the PDG [1], which shows that the partial
444widths to the different pseudoscalar- and vector-baryon
445channels are of the same order in spite of the larger phase
446space available in the former case. Such findings from
447experimental data cannot be easily described within the
448quark model. In fact, the couplings obtained in Ref. [2]
449show that N!ð1895Þ couples more strongly to the vector-
450baryon channels, which clearly indicates that the hadron
451dynamics plays an important role in describing the proper-
452ties of N!ð1895Þ. Here, it is particularly important to notice
453thatN!ð1895Þ couples strongly toK!ð892ÞΛ (see Table III),
454whereas its neighboring states N!ð1880Þ (Jπ ¼ 1=2þ),
455N!ð1900Þ (Jπ ¼ 3=2þ) couple much less to this channel.
456The branching fraction of N!ð1880Þ → K!ð892ÞΛ is
4570.5–1% [1], and that of N!ð1900Þ → K!ð892ÞΛ is known
458to be < 0.2% [1]. The decay to K!ð892ÞΛ can, thus, be a
459distinguishing feature of N!ð1895Þ.
460To finalize the discussions on the decay widths, it is
461important to consider another possible source of uncer-
462tainty present in the model which is the relative phases in
463the Lagrangians. The relative phases among the Lagrangians
464in Eq. (4) are set as in Refs. [2,30] where the couplings of the
465N!=H! to the PB/VB channels were determined. However,
466there may exist an ambiguity in the relative phase among the
467Lagrangians used for the meson vertices [Eqs. (2) and (3)]. It
468is then important to discuss the sensitivity of our results on
469the ambiguity in the relative phase of the PPV and VVP
470Lagrangians. In case of the N!ð1895Þ decay to KΛð1405Þ,
471we find that the amplitude for the diagram in Fig. 1(b) gives
472the dominant contribution such that the results are basically
473insensitive to the relative phase among the PPV and VVP
474vertices. For the N!ð1895Þ decay to KΣð1400Þ the contri-
475bution of Fig. 1(c) is such that there exists a large cancellation
476between the amplitudes of N!

1ð1895Þ → KΣð1400Þ and
477N!

2ð1895Þ → KΣð1400Þ. As a consequence the decay width
478of the superposed N!ð1895Þ to KΣð1400Þ depends weakly
479on the relative phase of the PPV and VVP vertices. For
480example, if we consider gVVP → −gVVP in Eq. (3) and the
481cutoff, Λ, is allowed to vary in the range 600–700 MeV, to

TABLE III. Branching ratios (in the isospin base) of the two
poles of N!ð1895Þ to different pseudoscalar-baryon and vector-
baryon channels.

Branching ratios (%) Experimental

Decay channel N!
1ð1895Þ N!

2ð1895Þ data [1]

πN 9.4 10.8 2–18
ηN 2.7 18.1 15–40
KΛ 10.9 19.4 13–23
KΣ 0.7 26.0 6–20
ρN 5.6 3.5 <18
ωN 25.7 6.2 16–40
ϕN 8.9 1.1 ) ) )
K!Λ 12.1 14.0 4–9
K!Σ 6.1 0.3 ) ) )
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exist an ambiguity in the relative phase among the Lagrangians used for the meson vertices

[Eqs. (2) and (3)]. It is then important to discuss the sensitivity of our results on the

ambiguity in the relative phase of the PPV and VVP Lagrangians. In case of the N⇤(1895)

decay toK⇤(1405), we find that the amplitude for the diagram in Fig. 1b gives the dominant

contribution such that the results are basically insensitive to the relative phase among the

PPV and VVP vertices. For the N⇤(1895) decay to K⌃(1400) the contribution of Fig. 1c is

such that there exists a large cancellation between the amplitudes of N⇤
1 (1895) ! K⌃(1400)

and N
⇤
2 (1895) ! K⌃(1400). As a consequence the decay width of the superposed N

⇤(1895)

to K⌃(1400) depends weakly on the relative phase of the PPV and VVP vertices. For

example, if we consider gV V P ! �gV V P in Eq. (3) and the cut-o↵, ⇤, is allowed to vary in

the range 600-700 MeV, to regularize the triangular loops, we obtain the following decay

widths

�N⇤+(1895)!K+⇤(1405) = 5.7± 0.8 MeV, (36)

�N⇤+(1895)!K+⌃0(1400) = 6.3± 0.2 MeV, (37)

which should be compared with Eqs. (31) and (33). It can be seen that the two results are

compatible.

Finally, it can also be important to provide the energy dependence of the amplitudes

obtained in this work, which can be useful in investigating reactions where N
⇤(1895) is

produced in an intermediate state. For example, the process �p ! K⇤(1405), K⌃(1400)

can proceed as depicted in Fig. 4. Since N
⇤(1895) has a finite width, determining the

FIG. 4. Contribution of N⇤(1895) in H
⇤0 photoproduction, where H⇤ denotes ⇤(1405) or ⌃(1400).

cross sections of such a process requires the energy dependent N⇤+(1895) ! K
+
H

⇤0 vertex.

Having this in mind, we show in Fig. 5 the real (solid lines) and imaginary parts (dashed

lines) of the amplitudes for the processes N
⇤+
1,2 ! K

+⇤1,2 and K
+⌃0(1400) in the energy

region of interest. In fact, our findings indicate that besides considering the K⇤, K⌃,

K
⇤⇤ production processes in partial wave analyses, such as in Refs. [10–12, 35], including

photoproduction of K⇤(1405) can be useful in determining the properties of N⇤(1895).

17
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Impact on the cross sections of hyperon production

γp → KþΛð1405Þ. Indeed the data on the photoproduction
of Λð1405Þ are already available from the CLAS
Collaboration [19,25], and the data with better statistics
are expected to be released from the experiments planned at
the ELSA facility in Bonn [26]. The aim of the latter facility
is to better establish the nature of Λð1405Þ. We find that the
results obtained in Ref. [21] are useful in reproducing the
KþΛð1405Þ production data from the CLAS/JLab [25].
Further, to motivate similar experimental studies of
Σð1400Þ, we predict the cross sections for its production
in photon-proton collisions. We also provide the results on
the asymmetries and polarized cross sections for
KþΛð1405Þ as well as KþΣð1400Þ productions, which
can be useful for future experimental investigations.
To accomplish the above mentioned goals, we consider

the s-, t-, and u-channel Born diagrams and employ an
effective Lagrangian approach where the couplings of the
different vertices are obtained mainly from Ref. [21].
Besides considering the nucleon exchange in the s-channel,
we also include N$ð1895Þ, which lies extremely close to
the KY$ thresholds, where Y$ denotes Λð1405Þ or Σð1400Þ.
We do not require to introduce any unknown parameters
when considering the N$ð1895Þ exchange, since its decay
to the KY$ channel was recently studied in Ref. [27].
Furthermore, we determine the electromagnetic couplings
of N$ð1895Þ [as well as of Λð1405Þ and Σð1400Þ] by using
the vector dominance model, where the required vector-
baryon couplings to the resonant states are taken from
Refs. [21,28]. We find that the N$ð1895Þ exchange plays an
important role in describing the Λð1405Þ photoproduction
data near the threshold region. To describe the cross
sections for energies away from the threshold region of
the reactions, the effective Lagrangian approach is
complemented with a Regge model [29] in which the
t-channel K- and K$-Reggeon exchange processes are
considered.
The paper is organized as follows. In Sec. II, we

describe our theoretical framework. In Sec. III, we show
and discuss our numerical results of the total and
differential cross sections for γp → KþΛð1405Þ and
γp → KþΣ0ð1400Þ. We also predict some asymmetries
and polarized cross sections. The final section is devoted
to the summary.

II. THEORETICAL FRAMEWORK

We start our discussions by introducing the effective
Lagrangians for the photoproduction of the hyperon res-
onances Λ$ ≡ Λð1405Þ and Σ$ ≡ Σð1400Þ, together with
the basics of the Regge model for the t-channel exchange
processes. Next, we provide the formalism to evaluate the
strong vertices N$ð1895Þ → KΛð1405Þ, KΣð1400Þ, and
the radiative decays of N$ð1895Þ, Λð1405Þ, and Σð1400Þ,
which are necessary to determine the γp → N$ð1895Þ →
KY$ cross sections.

A. Effective Lagrangians and Regge model

Within our approach, the production mechanism of the
Y$ resonances in the reaction γp → KþY$ consists of the
standard t-, s-, and u-channel Born terms combined with
the s-channel resonance exchange as shown in Fig. 1.
The effective Lagrangians for the electromagnetic (EM)

interaction vertices shown in Fig. 1 are written as

LγKK ¼ −ie½K†ð∂μKÞ − ð∂μK†ÞK'Aμ;

LγKK$ ¼ gcγKK$ϵμναβ∂μAν½ð∂αK$−
β ÞKþ þ K−ð∂αK

$þ
β Þ';

LγNN ¼ −eN̄
!
γμ

1þ τ3
2

−
κN
2MN

σμν∂ν

"
AμN;

LγYY$ ¼ eμY$Y

2MN
Ȳγ5σμν∂νAμY$ þ H:c:; ð1Þ

where Aμ is the photon field, e is the unit electric charge
and Y denotes the field for the ground-state Λð1116Þ or
Σ0ð1192Þ. In Eq. (1), the coupling constant gcγKK$ is
determined from the experimental data for ΓK$þ→Kþγ

[30], which gives a value of 0.254 GeV−1, and κp ¼
1.79 [30] is the proton anomalous magnetic moment. As
for the transition magnetic moments μY$Y , we refer the
reader to the next subsection for the details on its
determination.
For the strong interaction vertices shown in Fig. 1, the

corresponding effective Lagrangians read as

(a) (c)(b)
FIG. 1. (a) t- (b) s- and (c) u-channel Feynman diagrams for γp → KþY$, where Y$ ¼ Λ$ or Σ$ and k1 (k2), p1 (p2) are the four-
momenta assigned to the particles in the initial (final) state.
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Impact on the cross sections of hyperon production

way for Λð1405Þ, Σð1400Þ and N#ð1895Þ are given in
Table III. It should be noted that these results have been
obtained by convoluting the partial widths over the finite
widths of B# as in Eq. (14).
An important point to consider is that Λð1405Þ as well as

N#ð1895Þ are related to two poles in the complex plane. We
provide the decay widths for each pole of Λð1405Þ and
N#ð1895Þ separately. However, since in each case, the
poles have overlapping widths and experimentally they
may be observed as one state, we find it useful to obtain the
decay width of such a state. To do this we recall that the
effect of two close lying poles in the complex plane, on
the real axis, can be produced by an interference between
meson-baryon amplitudes related to the two poles written
within the Breit-Wigner description. In the same spirit, we
calculate the decay width by allowing an interference
between the couplings of the two poles and by using a
mass and width which is an average value obtained from
the pole positions. Such decay widths are underlined in
Table III.
We can now compare our results with the information

available from the experiments. The radiative decay width
ofΛð1405Þ → Λγ determined from the experimental data is
known to be 27$ 8 KeV [30]. Our result obtained by
considering the superposition of the two poles is in
remarkable agreement with the experimental data. For
Λð1405Þ → Σγ, PDG [30] provides two possible values:
10$ 4 KeV or 23$ 7 KeV. Our results are closer to the
former value.
In case of N#ð1895Þ, the branching ratio of the radiative

decay is known to be 0.01-0.06% [30]. In our case, the
branching ratio for N#

1 is 0.34–0.42%, while for N#
2 is

0.11–0.13%. If we consider the superposition of the
two poles of N#ð1895Þ, which produces a peak on the
real axis with an average width of about 120 MeV, we
obtain a branching ratio ∼0.49–0.60%. Our results for the
second pole seem to be closer to the upper limit of the
value listed in Ref. [30]. Actually the real and imaginary
part of this second pole are closer to the values associated
with N#ð1895Þ in Ref. [30]. Further, it should be
mentioned that making a comparison is difficult in this
case, since all structures above 1800 MeVappearing in the
S11 wave are listed under the label of N#ð1895Þ in
Ref. [30]. And due to this former fact, information from
different states might be associated with N#ð1895Þ. In
fact, the branching ratios are estimated in Ref. [30] by
using helicity amplitudes from Refs. [41,42],
where the former work associates a pole of 1956 −
i449=2 MeV with N#ð1895Þ while the latter one
finds ð1907$ 10Þ − ið100þ40

−15Þ=2 MeV.
Having the decay widths in Table III, we obtain the

transition magnetic moments related to each decay using
the relation

ΓB#→Bγ ¼
ðeμB#BÞ2jK⃗j3

4πM2
N

; ð28Þ

and their values are summarized in Table IV. The transition
magnetic moments μΛ#Λ determined in our work for the
individual poles of Λð1405Þ, as well as for their super-
position, are compatible with those obtained within the
chiral unitary model of Ref. [43].

TABLE III. Radiative decay widths for Λð1405Þ, Σð1400Þ and N#ð1895Þ. The underlined process means that an interference between
the two poles related to the decaying hadron has been considered to obtain the decay width.

Decay process Partial width (KeV) Decay process Partial width (KeV)

Λ1ð1405Þ → Λγ 9.47$ 2.17 N#
1ð1895Þ → pγ 729.17$ 78.20

Λ2ð1405Þ → Λγ 11.91$ 3.39 N#
2ð1895Þ → pγ 129.59$ 13.89

Λð1405Þ → Λγ 26.19$ 6.93 N#ð1895Þ → pγ 650.70$ 65.10
Λ1ð1405Þ → Σγ 5.17$ 1.75 Σð1400Þ → Λγ 49.97$ 8.57
Λ2ð1405Þ → Σγ 2.08$ 1.72 Σð1400Þ → Σγ 94.51$ 9.33
Λð1405Þ → Σγ 2.50$ 1.37

TABLE IV. Transition magnetic moments related to decays of Λð1405Þ, Σð1400Þ, and N#ð1895Þ. The underlined process means that a
superposition of the two poles associated with the decaying hadron has been considered to obtain the decay width.

Decay process Magnetic moment Decay process Magnetic moment

Λ1ð1405Þ → Λγ 0.28$ 0.02 N#
1ð1895Þ → pγ 0.56$ 0.02

Λ2ð1405Þ → Λγ 0.26$ 0.02 N#
2ð1895Þ → pγ 0.20$ 0.01

Λð1405Þ → Λγ 0.42$ 0.03 N#ð1895Þ → pγ 0.45$ 0.02
Λ1ð1405Þ → Σγ 0.33$ 0.03 Σð1400Þ → Λγ 0.60$ 0.03
Λ2ð1405Þ → Σγ 0.15$ 0.04 Σð1400Þ → Σγ 1.28$ 0.04
Λð1405Þ → Σγ 0.20$ 0.03

PHOTOPRODUCTION OF λ# AND σ# … PHYS. REV. D 103, 114017 (2021)

114017-7



Impact on the cross sections of hyperon production

III. NUMERICAL RESULTS AND DISCUSSIONS

Let us show and discuss our numerical results. We first
reproduce the γp → KþΛ" reaction and use the same
model parameters for predicting the observables for the
γp → KþΣ" process except for some coupling constants
which are determined in Sec. II. The cutoff masses in
Eq. (8) and (9) are determined to be ΛN;Λ;Σ ¼ 0.9 GeV and
ΛN" ¼ 0.83 GeV, respectively. The total cross section for
γp → KþΛ" is displayed as a function of the photon
laboratory (lab) energy Eγ in Fig. 4(a). It turns out that
the constant K Regge phase in Eq. (5) produces good
results regardless of the K" phase. The CLAS data [25] at
lab energies above 2.5 GeV are reproduced quite well by
the Born-term contribution mostly due to the K-Reggeon
exchange. The contribution of the K"-Reggeon exchange is
highly suppressed because of the small value of gK"NΛ"

relative to gKNΛ" . The low-energy region (Eγ ≤ 2.5 GeV) is
matched after we additionally include the N" contributions,

each of them is depicted in Fig. 4(b). The previous study
[29] included two PDG resonances, N"ð2000; 5=2þÞ
and N"ð2100; 1=2þÞ, and three missing resonances,
N"ð2030; 1=2−Þ, N"ð2055; 3=2−Þ, and N"ð2095; 3=2−Þ. It
attributed a major role to the two PDG resonances. In this
work, we additionally include the N"ð1895Þ that has a two
pole nature as discussed in Sec. II. The larger discrepancy
between the Born-term contribution and the CLAS data at
Eγ ≤ 2.5 GeV as compared to the results in Ref. [29]
is due to the small modification in constructing a gauge-
invariant amplitude [See Eq. (7)]. It is interesting that
including N"ð1895Þ provides a satisfactory description of
γp → KþΛ". The two poles of N"ð1895Þ interfere
constructively and their sum reaches around 0.3μb at Eγ ¼
1.6 GeV as shown in Fig. 4(b).
We present our prediction of the total cross section for

γp → KþΣ" in Fig. 5(a). The cross section attains a
maximum value of about 0.12 μb at Eγ ¼ 1.6 GeV.

1.5 2 2.5 3 3.5 4
Eγ [GeV]

0

0.2

0.4

0.6

σ [
µb

]

CLAS
K + Nelec
K*
sum of N*
Born
full

×103

γ p → Κ+Λ(1405) (a)

1.5 2 2.5 3
Eγ [GeV]

0

0.1

0.2

0.3

σ [
µb

]

N*1(1895, 1/2-)
N*2(1895, 1/2-)
N*(2000, 5/2+)
N*(2100, 1/2+)
sum of N*

γ p → Κ+Λ(1405) (b)

FIG. 4. (a) Total cross section for γp → KþΛð1405Þ is plotted as a function of the lab energy Eγ. The red dotted curve represents the
sum of the K-Reggeon and electric part of N contributions. The green dot-dashed and the magenta dot-dashed-dashed curves denote the
K"-Reggeon and the N" contributions, respectively. The blue dashed and the black solid curves stand for the Born-term and the full
contributions, respectively. (b) Each of the N" contributions is plotted. (a) The data are taken from the CLAS Collaboration [25]. The
K"-Reggeon contribution is multiplied by the factor of 103 for easy comparison.

1.5 2 2.5 3 3.5 4
Eγ [GeV]

0

0.05

0.1

0.15

σ [
µb

]

K + Nelec
K*
sum of N*
Born
full

γ p → Κ+Σ

1.5 2 2.5 3
Eγ [GeV]

0

0.1

0.2

0.3
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µb
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N*1(1895, 1/2-)
N*2(1895, 1/2-)
sum of N*

γ p → Κ+Σ(1400) (a) (1400) (b)

FIG. 5. (a) Total cross section for γp → KþΣð1400Þ is plotted as a function of the lab energy Eγ. The curve notations are the same as
Fig. 4(a). (b) Each of the N" contributions is plotted.
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III. NUMERICAL RESULTS AND DISCUSSIONS

Let us show and discuss our numerical results. We first
reproduce the γp → KþΛ" reaction and use the same
model parameters for predicting the observables for the
γp → KþΣ" process except for some coupling constants
which are determined in Sec. II. The cutoff masses in
Eq. (8) and (9) are determined to be ΛN;Λ;Σ ¼ 0.9 GeV and
ΛN" ¼ 0.83 GeV, respectively. The total cross section for
γp → KþΛ" is displayed as a function of the photon
laboratory (lab) energy Eγ in Fig. 4(a). It turns out that
the constant K Regge phase in Eq. (5) produces good
results regardless of the K" phase. The CLAS data [25] at
lab energies above 2.5 GeV are reproduced quite well by
the Born-term contribution mostly due to the K-Reggeon
exchange. The contribution of the K"-Reggeon exchange is
highly suppressed because of the small value of gK"NΛ"

relative to gKNΛ" . The low-energy region (Eγ ≤ 2.5 GeV) is
matched after we additionally include the N" contributions,

each of them is depicted in Fig. 4(b). The previous study
[29] included two PDG resonances, N"ð2000; 5=2þÞ
and N"ð2100; 1=2þÞ, and three missing resonances,
N"ð2030; 1=2−Þ, N"ð2055; 3=2−Þ, and N"ð2095; 3=2−Þ. It
attributed a major role to the two PDG resonances. In this
work, we additionally include the N"ð1895Þ that has a two
pole nature as discussed in Sec. II. The larger discrepancy
between the Born-term contribution and the CLAS data at
Eγ ≤ 2.5 GeV as compared to the results in Ref. [29]
is due to the small modification in constructing a gauge-
invariant amplitude [See Eq. (7)]. It is interesting that
including N"ð1895Þ provides a satisfactory description of
γp → KþΛ". The two poles of N"ð1895Þ interfere
constructively and their sum reaches around 0.3μb at Eγ ¼
1.6 GeV as shown in Fig. 4(b).
We present our prediction of the total cross section for

γp → KþΣ" in Fig. 5(a). The cross section attains a
maximum value of about 0.12 μb at Eγ ¼ 1.6 GeV.
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FIG. 4. (a) Total cross section for γp → KþΛð1405Þ is plotted as a function of the lab energy Eγ. The red dotted curve represents the
sum of the K-Reggeon and electric part of N contributions. The green dot-dashed and the magenta dot-dashed-dashed curves denote the
K"-Reggeon and the N" contributions, respectively. The blue dashed and the black solid curves stand for the Born-term and the full
contributions, respectively. (b) Each of the N" contributions is plotted. (a) The data are taken from the CLAS Collaboration [25]. The
K"-Reggeon contribution is multiplied by the factor of 103 for easy comparison.
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FIG. 5. (a) Total cross section for γp → KþΣð1400Þ is plotted as a function of the lab energy Eγ. The curve notations are the same as
Fig. 4(a). (b) Each of the N" contributions is plotted.
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Results on polarization observables also available in our work.



Coupled channel hadron dynamics plays an important role in understanding the properties of
. 

It’s two pole nature describes well the width/branching ratios for the known decay processes.  

The decay width of   to light hyperons is substancial, comparable to decay to . 

Such an information is useful in describing the cross sections of processes, like the 
photoproduction of light hyperons. 

 Decay properties of  can be useful in distinguishing it from other neighboring 
nucleons.

N*(1895)

N*(1895) πN

N*(1895)
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