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Abstract

A study of B+
c ! K+K�⇡+ decays is performed for the first time using data

corresponding to an integrated luminosity of 3.0 fb�1 collected by the LHCb ex-
periment in pp collisions at centre-of-mass energies of 7 and 8TeV. Evidence for
the decay B+

c ! �c0(! K+K�)⇡+ is reported with a significance of 4.0 stan-

dard deviations, resulting in the measurement of �(B+
c )

�(B+) ⇥ B(B+
c ! �c0⇡+) to be

(9.8+3.4
�3.0(stat)± 0.8(syst))⇥ 10�6. Here B denotes a branching fraction while �(B+

c )
and �(B+) are the production cross-sections for B+

c and B+ mesons. An indication
of bc weak annihilation is found for the region m(K�⇡+) < 1.834GeV/c2, with a
significance of 2.4 standard deviations.
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D three-body  HADRONIC decay are dominated by resonances 

what can we learn from  ?D → hhh
Dalitz plot
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➤ Dalitz plot:  
Technique to analyse three-body decays 

➤ 2 variables are enough to describe the 
phase-space 

➤ Axes are defined as: 

s12 = m2
12 = (p1 + p2)

2

s23 = m2
23 = (p2 + p3)

2

s31 = m2
31 = (p3 + p1)

2

➤ Event distribution is proportional to 
square of the decay amplitude

scalar

tensor

vector

can lead to new physics 

 CPV on ?D → hhh searches in many process

meson-meson interactions and 
resonance structures

 underlying strong force behave 

 spectroscopy low energy resonances 
σ, κ

new large data sample from LHCb, 
Belle II, BES III + …

CP-Violation 

massive localized direct CP asymmetryB± ! h±h�h+

1st observation  in charm
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     hadronize

ex:   

D
F
S
I

Dalitz plot 

29

P ! abc

28

É possível construir três 
invariantes a partir dos 
4-momenta das filhas:

Quando escolhemos dois desses invariantes para  
descrever a cinemática do decaimento,  a densidade  

do espaço de fase é constante. O diagrama  
bidimensional resultante é o chamado Dalitz plot

A(s12, s23) =
X

Ak(s12, s23)dynamics

K
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é o

sup
rim

ido
de c

or (
colo

r

sup
pres

sed)
, po

is u
ma

emi
ssão

inte
rna

do
W

gera
um

par
que

pre
cisa

com
bin

ar a
carg

a

de
cor

ade
qua

dam
ente

com
os q

uar
ks d

o mar
, pa

ra form
ar o

s há
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últi
mos

imp
lica

m dua
s troc

as de
sab

or,
o que

não

oco
rre

nes
se caso

. O mod
o com

o o diag
ram

a a dá
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one way to extract  information from data 
is an amplitude MODEL

F
S
IWA =         *

Final State Interactions
- strong -

+=M
F
S
 I

++ ++ ...

+=M
F
S
 I

++ ++ ...

(2+1) +  3-body interactions

primary vertex
- weak -

QCD, CKM coupling and phase

Three-body heavy meson decay Dynamics
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standard approach
common cartoon to described 3-body decay
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É possível construir três 
invariantes a partir dos 
4-momenta das filhas:

Quando escolhemos dois desses invariantes para  
descrever a cinemática do decaimento,  a densidade  

do espaço de fase é constante. O diagrama  
bidimensional resultante é o chamado Dalitz plot

A(s12, s23) =
X

Ak(s12, s23)

D0 ! Ks⇡
�⇡+

-  sum of BW violates two-body unitarity  ( 2 res in the same channel - scalars)
  
 

-  resonance's mass and width are processes dependent

3= (2+1) ignore the interaction with 3rd particle (bachelor)

isobar model widely used by experimentalists: 

D
+
! W

+ which, subsequently gives rise to the processes shown in Fig. 3. The correspond-

ing amplitude is proportional to the product of matrix elements h(KKK)+|Aµ
|0ih0|Aµ|M

+
i,

where A
µ is the axial current. The Triple-M is composed by a non-resonant term and two

resonant contributions, associated with the � and the f0. The non-resonant amplitude is

a direct prediction from chiral symmetry and represented by a polynomial, with no free

parameters. It describes a proper three-body interaction, rather than the of 2+1 decom-

position (two-body subsystem+spectator). As this contribution involves no loops, it is real

for theoretical reasons and, therefore, adequate for fixing the overall phase of the Triple-M

amplitude.

The resonant contributions involve expressions which are very di↵erent from the Ak used

in the isobar model amplitude A =
P

ck Ak, but these expressions yield a similar line shape.

However, in the Triple-M, the free coe�cients ck are absent, because the intensity of each

resonance is predicted by the underlying dynamics. In particular, the � contribution is

completely fixed, for its intensity is related directly with the decay width into K̄K. The

case of the f0 is di↵erent, just because one does not have precise values for its mass and

couplings. Therefore, the three parameters in the amplitude, namely mf0 , cd, and cm, are

left to be determined by fits to data. In the K
�
K

+
K

+ final state one can access only the

tail of the f0, and therefore this channel may not be the best one for the determination

of these three parameters. The decay D
+
s ! ⇡

�
⇡
+
⇡
+, where the f0(980) is the dominant

component, would be the most adequate for this measurement. It is worth mentioning a

recent work [21] on this subject, where the f0(980) line shape is obtained in the context of

the Chiral Unitary theory, from a study of D+
s decays into ⇡

�
⇡
+
⇡
+ and K

�
K

+
K

+.

Our study also encompasses other dynamical e↵ects, representing corrections to the in-

termediate K̄K scattering amplitude, which were discussed in section IV and found to be

small. We have left them out of the Triple-M, for the time being, since the ability of the

leading contributions to reproduce data must be tested first. This kind of testing would

provide important indications about the importance of e↵ects which are not included in the

the present version of the Triple-M, such as isospin 1 resonances, as well as dynamical e↵ects

associated with processes other than the annihilation diagram.

20

+ NR coherent sum of  amplitude’s in different parcial waves

!

Lineshapes

In atomic physics, an unstable state appears as a resonance and near the resonance energy
the scattering amplitude is given by the non-relativistic Breit-Wigner formula, which was
created to describe resonant transitions in capture of slow neutrons. [33]:

f(E) /
1

E � Eo + i�/2
. (94)

This is an approximation valid for narrow and isolated resonances. The relativistic
formulation of the Breit-Wigner formula is written as

1

p2 � m2 + im�
. (95)

Since the Isobar model assumes that one particle is the spectator, the resonance occurs in
a given channel, e.g. s12, and the formula for the Isobar model is:

BW(s12) =
1

m2

R � s12 � imR�(s12)
, (96)

where mR is the mass of the resonances and �(s12) is the mass-dependent width:

�(s12) = �R

✓
q

q0

◆2L+1 mR
p
s12

✓
FL
R (z)

FL
R (z0)

◆2

, (97)

where �R is the resonance width.
Another lineshape commonly used for resonances that couple to di↵erent channels is

the Flatté [38]. This formulation will be used in this work to represent a resonance with
mass close to a threshold, such as an f0(980):

F(s12) =
1

m2

R � s12 � imR(⇢⇡⇡g2⇡ + ⇢KKg2K)
, (98)

where g⇡ and gK are dimensionless coupling constants to the KK̄ and ⇡⇡ channels,
respectively, and ⇢⇡⇡ and ⇢KK are the corresponding phase space factors,

⇢⇡⇡ =

r⇣s12
4

� m2
⇡

⌘
+

r⇣s12
4

� m2

⇡0

⌘
(99)

⇢KK =

r⇣s12
4

� m2

K

⌘
+

r⇣s12
4

� m2

K0

⌘
. (100)

4.3 Fitting procedure

The optimum values of the c0ks parameters are obtained using the Maximum Likelihood
Method, taking in account the e�ciency variation across the Dalitz plot and the background
distribution. The fit is performed in the Rio+ software.

36

Warning: when  is described as singular resonances  Ak +=M
F
S
 I

++ ++ ... +=M
F
S
 I

++ ++ ...

D
+
! W

+ which, subsequently gives rise to the processes shown in Fig. 3. The correspond-

ing amplitude is proportional to the product of matrix elements h(KKK)+|Aµ
|0ih0|Aµ|M

+
i,

where A
µ is the axial current. The Triple-M is composed by a non-resonant term and two

resonant contributions, associated with the � and the f0. The non-resonant amplitude is

a direct prediction from chiral symmetry and represented by a polynomial, with no free

parameters. It describes a proper three-body interaction, rather than the of 2+1 decom-

position (two-body subsystem+spectator). As this contribution involves no loops, it is real

for theoretical reasons and, therefore, adequate for fixing the overall phase of the Triple-M

amplitude.

The resonant contributions involve expressions which are very di↵erent from the Ak used

in the isobar model amplitude A =
P

ck Ak, but these expressions yield a similar line shape.

However, in the Triple-M, the free coe�cients ck are absent, because the intensity of each

resonance is predicted by the underlying dynamics. In particular, the � contribution is

completely fixed, for its intensity is related directly with the decay width into K̄K. The

case of the f0 is di↵erent, just because one does not have precise values for its mass and

couplings. Therefore, the three parameters in the amplitude, namely mf0 , cd, and cm, are

left to be determined by fits to data. In the K
�
K

+
K

+ final state one can access only the

tail of the f0, and therefore this channel may not be the best one for the determination

of these three parameters. The decay D
+
s ! ⇡

�
⇡
+
⇡
+, where the f0(980) is the dominant

component, would be the most adequate for this measurement. It is worth mentioning a

recent work [21] on this subject, where the f0(980) line shape is obtained in the context of

the Chiral Unitary theory, from a study of D+
s decays into ⇡

�
⇡
+
⇡
+ and K

�
K

+
K

+.

Our study also encompasses other dynamical e↵ects, representing corrections to the in-

termediate K̄K scattering amplitude, which were discussed in section IV and found to be

small. We have left them out of the Triple-M, for the time being, since the ability of the

leading contributions to reproduce data must be tested first. This kind of testing would

provide important indications about the importance of e↵ects which are not included in the

the present version of the Triple-M, such as isospin 1 resonances, as well as dynamical e↵ects

associated with processes other than the annihilation diagram.
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with resonances defined as  Breit-Wigner 
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Models available

movement to use better 2-body (unitarity) inputs in data analysis 

Anisovich PLB653(2007)

“K-matrix" : ππ S-wave 5 coupled-channel modulated by a production amplitude  

used by Babar, LHCb, BES III 

contribution in B± ! ⇡+⇡�⇡±
rescattering ⇡⇡ ! KK

Pelaez, Yndurain PRD71(2005) 074016
[arXiv:1905.09244]

LHCb  
[arXiv:1909.05212;

 1909.05211]

B± ! K�K+⇡±
<latexit sha1_base64="mMSZddFn27wxwpC513G8OSJwjQA=">AAACAHicbVDLSgMxFM3UV62vURcu3ASLIIhlpgp2WXQjdFPBPqAzLZk004ZmMiHJCGXoxl9x40IRt36GO//GTNuFth4IHM65l5tzAsGo0o7zbeVWVtfWN/Kbha3tnd09e/+gqeJEYtLAMYtlO0CKMMpJQ1PNSFtIgqKAkVYwus381iORisb8QY8F8SM04DSkGGkj9eyjm64nIujpGNa6F7XuuSdopvTsolNypoDLxJ2TIpij3rO/vH6Mk4hwjRlSquM6QvspkppiRiYFL1FEIDxCA9IxlKOIKD+dBpjAU6P0YRhL87iGU/X3RooipcZRYCYjpIdq0cvE/7xOosOKn1IuEk04nh0KEwZN3KwN2KeSYM3GhiAsqfkrxEMkEdams4IpwV2MvEya5ZJ7WSrfXxWrlXkdeXAMTsAZcME1qII7UAcNgMEEPINX8GY9WS/Wu/UxG81Z851D8AfW5w/9CZVZ</latexit>

new parametrization Pelaez, Rodas, Elvira Eur.Phys.J.C 79 (2019) 12, 1008

Still not enough to described data      entering a new age of huge data samples 

from theory:  list of scalar and vector form factors
< ⇡⇡|0 >

<latexit sha1_base64="gUu68W5qwO70FhPZfBHdBnWtQS8=">AAAB83icbVDLSgMxFL1TX7W+qi7dBIvgqsxUwS5ECm5cVrAP6Awlk2ba0EwmJBmhjP0NNy4UcevPuPNvTNtZaOvhXjiccy+5OaHkTBvX/XYKa+sbm1vF7dLO7t7+QfnwqK2TVBHaIglPVDfEmnImaMsww2lXKorjkNNOOL6d+Z1HqjRLxIOZSBrEeChYxAg2VvKvkS+ZrSfk3vTLFbfqzoFWiZeTCuRo9stf/iAhaUyFIRxr3fNcaYIMK8MIp9OSn2oqMRnjIe1ZKnBMdZDNb56iM6sMUJQo28Kgufp7I8Ox1pM4tJMxNiO97M3E/7xeaqJ6kDEhU0MFWTwUpRyZBM0CQAOmKDF8YgkmitlbERlhhYmxMZVsCN7yl1dJu1b1Lqq1+8tKo57HUYQTOIVz8OAKGnAHTWgBAQnP8ApvTuq8OO/Ox2K04OQ7x/AHzucPodeQvA==</latexit>

< K⇡|0 >
<latexit sha1_base64="fOTlH0biGPa2vQwvTJLeNg/uAVo=">AAAB8nicbVBNSwMxEM36WetX1aOXYBE8ld0q2INIwYvgpYL9gO1Ssmm2Dc0mSzIrlLU/w4sHRbz6a7z5b0zbPWjrg4HHezPMzAsTwQ247rezsrq2vrFZ2Cpu7+zu7ZcODltGpZqyJlVC6U5IDBNcsiZwEKyTaEbiULB2OLqZ+u1Hpg1X8gHGCQtiMpA84pSAlfwrfIe7CX/C7nWvVHYr7gx4mXg5KaMcjV7pq9tXNI2ZBCqIMb7nJhBkRAOngk2K3dSwhNARGTDfUkliZoJsdvIEn1qljyOlbUnAM/X3REZiY8ZxaDtjAkOz6E3F/zw/hagWZFwmKTBJ54uiVGBQePo/7nPNKIixJYRqbm/FdEg0oWBTKtoQvMWXl0mrWvHOK9X7i3K9lsdRQMfoBJ0hD12iOrpFDdREFCn0jF7RmwPOi/PufMxbV5x85gj9gfP5A0Ppj+g=</latexit>

Moussallam  EPJ C 14, 111 (2000); Daub, Hanhart, and B. Kubis JHEP  02 (2016) 009. Hanhart,  PL B715, 170 (2012).

Dumm and Roig EPJ C 73, 2528 (2013).

 Moussallam   EPJ C 53, 401 (2008) Jamin, Oller and Pich, PRD 74, 074009 (2006) Boito, Escribano, and  Jamin EPJ C 59, 821 (2009).

< KK|0 >
<latexit sha1_base64="2LGjA9Rl1OXXWjhlYDhUNwV4dYk=">AAAB8HicbVBNSwMxEJ31s9avqkcvwSJ4KrtVsAeRghehlwr2Q9qlZNNsG5pklyQrlLW/wosHRbz6c7z5b0zbPWjrg4HHezPMzAtizrRx3W9nZXVtfWMzt5Xf3tnd2y8cHDZ1lChCGyTikWoHWFPOJG0YZjhtx4piEXDaCkY3U7/1SJVmkbw345j6Ag8kCxnBxkoPV6iGak/Ive4Vim7JnQEtEy8jRchQ7xW+uv2IJIJKQzjWuuO5sfFTrAwjnE7y3UTTGJMRHtCOpRILqv10dvAEnVqlj8JI2ZIGzdTfEykWWo9FYDsFNkO96E3F/7xOYsKKnzIZJ4ZKMl8UJhyZCE2/R32mKDF8bAkmitlbERlihYmxGeVtCN7iy8ukWS5556Xy3UWxWsniyMExnMAZeHAJVbiFOjSAgIBneIU3RzkvzrvzMW9dcbKZI/gD5/MHkNuO6g==</latexit>

no data  Albaladejo and Moussallam EPJ C 75, 488 (2015). 

Bruch, Khodjamirian, and Kühn , EPJ C 39, 41 (2005)quark model with isospin symmetry 

extrapolate from unitarity model

Fit from 3-body data PCM, Robilotta + LHCb JHEP 1904 (2019) 063
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extensions 

unitarization

isobar

SU(2) SU(3)

ChPT

energy

KK⇡⇡ DR

scale issue 6

Hadrons 2021

non-perturbative 

data decayscattering

we need non-perturbative meson-meson interactions up to….

Ropertz, Kubis, Hanhart 
EPJ Web Conf. 202 (2019) 06002 

extend 2-body amplitude theory validity 

3 GeV

PCM, A.dos Reis, Robilotta 
PRD 102, 076012 (2020)
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what data is showing ?

D0 ! Ks⇡
�⇡+

18

Are methods used for D decay 
Dalitz plots also valid for B decays?

�a�e �ode� �a�e �ode� 

as D deca�as D deca�

D→K–π+π0 B→K–π+π0

Tim Gershon
Introduction to Dalitz Plot Analysis

D Dalitz plot 
on same scale

Image credit: Brian Meadows

D0 ! K�⇡+⇡0

Similar final state but different interference pattern

different dynamics to be understood 
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FIG. 2: DP distributions for (a) D0 → K0
Sπ

+π− and (b) D0 → K0
SK

+K− data after all selection criteria, in the signal region.
The gray scale indicates the number of events per bin. The solid lines show the kinematic limits of the D0 decay. The s0 DP
variable is defined as s0 = m2(h+h−). For D0 decays the variables s− and s+ are interchanged.
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FIG. 3: DP projections for (a,b,c) D0 → K0
Sπ

+π− and (d,e,f) D0 → K0
SK

+K− data after all selection criteria, in the signal
region (points). The histograms represent the mixing fit projections. For D0 decays the variables s− and s+ are interchanged.

TABLE III: Summary of the contributions to the experimental systematic uncertainty on the mixing parameters.

Source x/10−3 y/10−3

Analysis biases and fitting procedure (Monte Carlo statistics) 0.75 0.66
Selection criteria 0.47 0.57
Signal and background yields 0.11 0.07
Efficiency variations across the DP 0.37 0.18
Modeling of the DP distributions for misreconstructed D0 decays 0.33 0.14
Modeling of the proper-time distributions for signal and misreconstructed D0 decays 0.13 0.13
Modeling of the proper-time error distributions for signal and misreconstructed D0 decays 0.06 0.09
Misidentification of the D0 flavor for signal and random π+

s events 0.49 0.40
Mixing in the random π+

s background component 0.10 0.08
PDF normalization 0.11 0.05
Misalignment of the detector 0.28 0.83
Total experimental systematic uncertainty 1.18 1.30

to disentangle the interference we need amplitude analysis

PRL 105 (2010) 081803

Babar

PRL 103 (2009) 103211801

Babar
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same final state different signatures

different resonance 
signature

D+ → π+π−π+

!!m"""#$ % 3:5 MeV=c2 both in data and the simulation.
The number of events in the K0

S peak is 2239& 77 from a
fit to a Gaussian signal plus linear background. Excluding
K0
S"
" fraction and the background leaves '2600 signal

events of theD" ! "#"""" decay. From these yields we
calculate branching fractions, B!D" ! "#""""$ %
!0:33& 0:01$% and B!D" ! K0

S"
"$ % !1:59& 0:06$%

(statistical errors are shown only), which are consistent
with recently published CLEO-c results B!D" !
"#""""$ % !0:34& 0:02$% [13] and B!D" !
K0
S"
"$ % !1:55& 0:05& 0:06$% [12]. This cross-check

demonstrates the quality of our simulation and validity of
assumptions about the background level.

The presence of two "" mesons impose a Bose-
symmetry of the "#"""" final state. The Bose-symmetry
when interchanging the two same sign charged pions is
explicitly accounted for in our amplitude parametrization.
We analyze events on the Dalitz plot by choosing x (
m2!"""#$Low and y ( m2!"""#$High as the independent
!x; y$ variables. The third variable z ( m2!""""$ is de-
pendent on x and y through the energy-momentum balance

equation. This choice folds all the data into the top half of
the kinematically allowed region, as is shown in Fig. 5. The
contribution from D" ! K0

S"
" is clearly seen as the nar-

row vertical band with m!"""#$Low ’ mK0
S
. In our Dalitz

plot analysis we do not consider events in the band 0:2<
m2!"""#$Low < 0:3 !GeV=c2$2, which is approximately
10 times our K0

S ! """# mass resolution. This leaves
4086 (signal and background) events for our Dalitz plot
analysis.

IV. DALITZ PLOT ANALYSIS

A. Formalism

This Dalitz plot analysis exploits the techniques and
formalism described in Ref. [14] that have been applied
in many other CLEO analyses. We use an unbinned maxi-
mum likelihood fit that minimizes the sum over N events:

 L % #2
XN

n%1

logP !xn; yn$; (3)

where P !x; y$, the probability density function (p.d.f.),
depends on the event sample to be fit,

 P !x; y$ %

8><
>:

"!x; y$ for efficiency;
B!x; y$ for background;
fsigN SjM!x; y$j2"!x; y$ " !1# fsig$N BB!x; y$ for signal:

(4)

The shapes for the efficiency "!x; y$ and background
B!x; y$ are explicitly x# y symmetric, third order poly-
nomial functions. To account for efficiency loss in the
corners of the Dalitz plot, due to low momentum tracks
that are not reconstructed, we use three multiplicative
threshold functions that drop the efficiency to zero when
one of the Dalitz variables x, y, or z is at their maximum

values. The background shape parametrization also in-
cludes the noncoherent addition of three resonances
#!770$, f2!1270$, and K0

S. The signal p.d.f. is proportional
to the efficiency-corrected matrix element squared,
jM!x; y$j2, whose fraction is fsig. We estimate fsig %
0:548& 0:013 from the fit to the mBC mass spectrum after
removing events of the K0

S contribution. The background

FIG. 4. Them!"""#$Low distribution of events preselected for
the Dalitz plot. A clear signal for the K0

S ! """# decay is
observed. Events in the range between the arrows, 0:2<
m2!"""#$Low < 0:3 !GeV=c2$2, are discarded from the Dalitz
plot analysis.

FIG. 5. The Dalitz plot for D" ! "#"""" candidates.

G. BONVICINI et al. PHYSICAL REVIEW D 76, 012001 (2007)

012001-4

D+
s → π+π−π+

7

m(K+K−π+) for this decay mode with a polynomial de-
scribing the background and a single Gaussian for the
signal, we obtain a width σ = 5.51± 0.04 MeV/c2. Since
the experimental resolution in ∆m is similar for the two
D+

s decay modes, we require the value of ∆m for the
D+

s → π+π−π+ mode to be within ±2σ of the Review
of Particle Physics [12] value of the (D∗

s(2112)
+ − D+

s )
mass difference. At this stage the three-pion invariant
mass signal region, defined between (−2σ, 2σ), where σ
is estimated by a Gaussian fit to the D+

s lineshapes, has
a purity (signal/(signal+background)) of 4.3%.

Each D+
s candidate is characterized by three variables:

the center of mass momentum p∗, the difference in proba-
bility P1−P2, and the signed decay distance dxy between
the D+

s decay vertex and the beam spot projected in the
plane normal to the beam collision axis. The distribu-
tions for these variables for background are inferred from
the D+

s → π+π−π+ invariant mass sidebands defined
between (−9σ,−5σ) and (5σ, 9σ). Since these variables
are (to a good approximation) independent of the de-
cay mode, the distributions for the three-pion invariant
mass signal, are inferred from the D+

s → K+K−π+ de-
cay. These normalized distributions are then combined
in a likelihood ratio test. The cut on the likelihood ratio
has been chosen in order to obtain the largest statistics
with background small enough to perform a Dalitz plot
analysis.

Many possible background sources are examined. A
small background contribution due to the decay D∗+ →
π+D0 where D0 → π+π− is addressed by removing
events with |m(π+π−) − mD0 | < 20.7 MeV/c2 and
m(π+π−π+) − m(π+π−) < 0.1475 GeV/c2. Particle
misidentification, in which a kaon (Kmis) is wrongly iden-
tified as a pion, is tested by assigning the kaon mass to
each pion in turn. In this way we observe a clean signal
in the mass difference m(π+K−

misπ
+) − m(π+K−

mis) due
to the decay D∗+ → π+D0 where D0 → K−

misπ
+. Re-

moving events with |m(K−
misπ

+)−mD0 | < 21.7 MeV/c2

and m(π+K−
misπ

+) − m(K−
misπ

+) < 0.1475 GeV/c2 di-
minishes this background. Finally, events having more
than one candidate are removed from the sample (1.2 %
of the events).

The resulting π+π−π+ mass distribution is shown in
Fig. 1(a). This distribution has been fitted with a single
Gaussian for the signal and a linear background function.
The fit gives a D+

s mass of (1968.1 ± 0.1) MeV/c2 and
width σ = 7.77 ± 0.09 MeV/c2 (statistical error only).
The signal region contains 13179 events with a purity
of 80%. The resulting Dalitz plot, symmetrized along
the two axes, is shown in Fig. 1(b). For this distribu-
tion, and in the following Dalitz plot analysis, we use the
track momenta obtained from the D+

s mass-constrained
fit. We observe a clear f0(980) signal, evidenced by the
two narrow crossing bands. We also observe a broad ac-
cumulation of events in the 1.9 GeV2/c4 region.
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FIG. 1: (a) π+π−π+ invariant mass distribution for the D+
s

analysis sample. The line is the result of the fit described in
the text. (b) Symmetrized D+

s → π+π−π+ Dalitz plot (two
entries per event).

IV. EFFICIENCY

The efficiency for this D+
s decay mode is determined

from a sample of Monte Carlo events in which the D+
s de-

cay is generated according to phase space (i.e. such that
the Dalitz plot is uniformly populated). These events are
passed through a full detector simulation and subjected
to the same reconstruction and event selection procedure
applied to the data. The distribution of the selected
events in the Dalitz plot is then used to determine the to-
tal reconstruction and selection efficiency. The MC sam-
ple e+e− → D∗+

s X , whereD∗+
s → γD+

s , used to compute

f0(980)

f0(980)

projection highlight 
that S-wave is very 

different

the distribution of the changes in the parameter from its
value in the nominal fit. For example, for the poorly
established resonances f0!980", f0!1370", and ! pole, we
allow their parameters to float and the variations of the
other fit parameters contribute to the systematic errors. The
nominal and fitted values of these parameters are presented
in Table IV. The fit results when the parameters are allowed
to float do not vary from the nominal values by more than 2
standard deviations.

C. Schechter model

The isobar model drawbacks are most apparent in the S
wave "#"$ sector where wide resonances overlap and
unitarity is not fulfilled. The model of Joseph Schechter
and co-workers in Refs. [9,19] is based on the meson part
of the chiral invariant linear sigma model [20] Lagrangian.
Poles are handled using K-matrix regularization which
respects unitarity by definition. Details of the parametriza-
tion are discussed in Appendix A 1, and here we only
summarize the meaning of the fit parameters.

In our isobar model Dalitz plot fit the "#"$ S wave is
represented by a complex-pole for the !, the Flatté for the

f0!980", and two Breit-Wigner for the f0!1370" and
f0!1500". Schechter’s S wave amplitude, Eq. (A14)
(Appendix A 1), parameterizes simultaneously the !
mixed with the f0!980" in strong and weak interactions.
The Schechter model describes the mixed ! and f0!980"
contributions to the Dalitz plot with seven parameters: the
bare masses m! and mf0

; the strong mixing angle  
between the ! and f0!980"; the total S wave amplitude
aSW and phase #SW; and the relative weak amplitude af0

and phase #f0
of the f0!980" with respect to the ! ampli-

tude. A combination of these parameters in the model gives
the total "#"$ scattering phase, $!m", and an overall S

TABLE II. Results of the isobar model analysis of the D# !
"$"#"# Dalitz plot. For each contribution the relative ampli-
tude, phase, and fit fraction is given. The errors are statistical and
systematic, respectively.

Mode Amplitude (a.u.) Phase (%) Fit fraction (%)

%!770""# 1 (fixed) 0 (fixed) 20:0& 2:3& 0:9
f0!980""# 1:4& 0:2& 0:2 12& 10& 5 4:1& 0:9& 0:3
f2!1270""# 2:1& 0:2& 0:1 $123& 6& 3 18:2& 2:6& 0:7
f0!1370""# 1:3& 0:4& 0:2 $21& 15& 14 2:6& 1:8& 0:6
f0!1500""# 1:1& 0:3& 0:2 $44& 13& 16 3:4& 1:0& 0:8
! pole 3:7& 0:3& 0:2 $3& 4& 2 41:8& 1:4& 2:5

FIG. 8. Projection of the Dalitz plot onto the m2!"#"$" axis
(two combinations per D# candidate) for CLEO-c data (points)
and isobar model fit (histograms) showing the various compo-
nents.FIG. 6. The adaptive binning scheme.

FIG. 7. The signal p.d.f. for the isobar model fit described in
the text.

G. BONVICINI et al. PHYSICAL REVIEW D 76, 012001 (2007)
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FIG. 3: Dalitz plot projections (points with error bars) and fit results (solid histogram). (a) m2(π+π−)low, (b) m
2(π+π−)high,

(c) total m2(π+π−), (d) m2(π+π+). The hatched histograms show the background distribution.

for all projections. The fit χ2 is computed by divid-
ing the Dalitz plot into 30×30 cells with 422 cells hav-
ing entries. We obtain χ2/NDF = 437/(422 − 64) =
1.2. The χ2 is also calculated using an adaptive bin-
ning with an average number of events per cell #35
(χ2/NDF = 365/(391− 64) = 1.1), obtaining a χ2 prob-
ability of 7.2%.
Attempts to include other resonant contributions, such

as ω(782) or f ′
2(1525), do not improve the fit quality. MC

simulations have been performed in order to validate the
method and test for possible multiple solutions.
The results from the Dalitz plot analysis can be sum-

marized as follows:

• The decay is dominated by the D+
s →

(π+π−)S−waveπ+ contribution.

• The S-wave shows, in both amplitude and phase,
the expected behavior for the f0(980) resonance.

• The S-wave shows further activity, in both ampli-
tude and phase, in the regions of the f0(1370) and
f0(1500) resonances.

• The S-wave is small in the f0(600) region, indicat-
ing that this resonance has a small coupling to ss̄.

• There is an important contribution from D+
s →

f2(1270)π+ whose size is in agreement with that
reported by FOCUS, but a factor two smaller than
that reported by E791. This is the largest contri-
bution in charm decays from a spin-2 resonance.

• We observe a similar trend for the S-wave am-
plitude and phase between the three experiments.
Our results agree better (within uncertainties) with
the results from FOCUS than those from E791.

Our results may be compared with different measure-
ments of the ππ amplitude and phase from many other
sources. For a recent review, see [16].
Systematic uncertainties on the fitted fractions are

evaluated in different ways:

• The background parametrization is performed us-
ing the information from the lower/higher sideband
only or both sidebands.

• The Blatt-Weisskopf barrier factors have a single
parameter r which we take to be 1.5 (GeV/c)−1 and
which has been varied between 0 and 3 (GeV/c)−1.

• Results from fits which give equivalent Dalitz plot

PRD 76 (2007)012001 

BabarCleo-c

PRD 79 (2009)032003 

production environment 
matters 
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D+
s ! ⇡+⇡�⇡+

2-body x 3-body  phases

Quantum numbers:

       3-body data: only spin! and       dynamics6=
2-body amplitude: spin and isospin well defined!

There is more than only 2-body

⇡+
<latexit sha1_base64="IMOk3oLNkoIsz8quODvMOO/AvzE=">AAAB7XicbVBNSwMxEJ2tX7V+VT16CRZBEMpuFfRY9OKxgv2Adi3ZNNvGZpMlyQpl6X/w4kERr/4fb/4bs+0etPXBwOO9GWbmBTFn2rjut1NYWV1b3yhulra2d3b3yvsHLS0TRWiTSC5VJ8CaciZo0zDDaSdWFEcBp+1gfJP57SeqNJPi3kxi6kd4KFjICDZWavVi9nBW6pcrbtWdAS0TLycVyNHol796A0mSiApDONa667mx8VOsDCOcTku9RNMYkzEe0q6lAkdU++ns2ik6scoAhVLZEgbN1N8TKY60nkSB7YywGelFLxP/87qJCa/8lIk4MVSQ+aIw4chIlL2OBkxRYvjEEkwUs7ciMsIKE2MDykLwFl9eJq1a1Tuv1u4uKvXrPI4iHMExnIIHl1CHW2hAEwg8wjO8wpsjnRfn3fmYtxacfOYQ/sD5/AGjKo6C</latexit>
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PRD 79 (2009) 032003 

2-body

3-body

different phases!

If this is the “nature” picture decay phase should be the same as 2-body

Watson’s Theorem 

(2+1)
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Three-body Models
Three-body FSI
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Models available
Three-body FSI
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PRD92 094005 (2015)Boito&Escribano PRD80 054007 (2009)

3-body FSI play a role

will be important for 
precision

 Niecknig, Kubis, JHEP10 142 (2015) 

3-body approaches
PCM et.al: PRD84 094001 (2011),

S.Nakamura PRD93 014005 (2016)

Faddeev
tri singularity
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amplitude analysis @LHCb

D+ ! K�K+K+
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Multimeson model for the D + → K +K −K + decay amplitude
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We propose an approach to describe the Dþ → K−KþKþ decay amplitude, based on chiral effective
Lagrangians, which can be used to extract information about KK̄ scattering. It relies on factorization and its
main novel feature is the role played by multimeson interactions characteristic of chiral symmetry. Our trial
function is an alternative to the widely used isobar model and includes both nonresonant three-body
interactions and two-body rescattering amplitudes, based on coupled channels and resonances, for S- and
P-waves with isospin 0 and 1. The latter are unitarized in the K-matrix approximation and represent the
only source of complex phases in the problem. The nonresonant component, given by chiral symmetry as a
real polynomium, is an important prediction of the model, which goes beyond the (2þ 1) approximation.
Our approach allows one to disentangle the two-body scalar contributions with different isospins,
associated with the f0ð980Þ and a0ð980Þ channels. We show how the KK̄ amplitude can be obtained from
the decay Dþ → K−KþKþ and discuss extensions to other three-body final states.

DOI: 10.1103/PhysRevD.98.056021

I. INTRODUCTION

Nonleptonic weak decays of heavy-flavored mesons are
extensively used in light meson spectroscopy. Owing to a
rich resonant structure, these decays provide a natural place
to study hadron-hadron interactions at low energies. In
particular, almost 20 years ago, three-body decays of
charmed mesons could confirm the existence of the con-
troversial scalar states f0ð600Þ (or sigma) [1] and K$

0ð800Þ
(or kappa) [2]. More comprehensive investigations can be
done nowadays, using the very large and pure samples
provided by the LHC experiments, and still more data is
expected in the near future, with Belle II experiments.
Three-body hadronic decays of heavy-flavored mesons

involve combinations of different classes of processes,
namely heavy-quark weak transitions, hadron formation
and final-state interactions (FSI), whereby the hadrons
produced in the primary vertex are allowed to interact in
many different ways before being detected. Final-state
processes include both proper three-body interactions
and a wide range of elastic and inelastic coupled channels

involving resonances. In this framework, a question arises
concerning how to obtain information about two-body
scattering amplitudes from the abundant data on three-
body systems.
The key issue of this program is the modeling of the

decay amplitudes. Most amplitude analyses have been
performed using the so-called isobar model, in which
the decay amplitude is represented by a coherent sum
of both nonresonant and resonant contributions. This
approach, albeit largely employed [3], has conceptual
limitations. The outcome of isobar model analyses are
resonance parameters such as fit fractions, masses and
widths, which are neither directly related to any underlying
dynamical theory nor provide clues to the identification of
two-body substructures. Thus, the systematic interpretation
of the isobar model results is rather difficult.
This situation motivated in the past decade efforts

towards building models that are based on more solid
theoretical grounds. Those models improve essentially the
two-meson interaction description in the FSI, with the use
of dispersion relations and chiral perturbation theory. Most
of them work in the quasi-two-body (2þ 1) approximation,
where interactions with the third particle are neglected.
Recently, a collection of parametrizations based on analytic
and unitary meson-meson form factors for D and B three-
body hadronic decays within the (2þ 1) approximation
was presented in Ref. [4]. Three-body FSIs were also
considered and, in particular, shown to play a significant
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Study of B+
c decays to the K+K�⇡+

final state and evidence for the decay

B+
c ! �c0⇡

+

The LHCb collaboration†

Abstract

A study of B+
c ! K+K�⇡+ decays is performed for the first time using data

corresponding to an integrated luminosity of 3.0 fb�1 collected by the LHCb ex-
periment in pp collisions at centre-of-mass energies of 7 and 8TeV. Evidence for
the decay B+

c ! �c0(! K+K�)⇡+ is reported with a significance of 4.0 stan-

dard deviations, resulting in the measurement of �(B+
c )

�(B+) ⇥ B(B+
c ! �c0⇡+) to be

(9.8+3.4
�3.0(stat)± 0.8(syst))⇥ 10�6. Here B denotes a branching fraction while �(B+

c )
and �(B+) are the production cross-sections for B+

c and B+ mesons. An indication
of bc weak annihilation is found for the region m(K�⇡+) < 1.834GeV/c2, with a
significance of 2.4 standard deviations.

Submitted to Phys. Rev. Lett.

c� CERN on behalf of the LHCb collaboration, license CC-BY-4.0.

†Authors are listed at the end of this article.
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 track the ingredients we include in our model! 

parameters have physical meaning: resonance masses and coupling constants 

Triple-M

depart from a fundamental theory  ChPT Lagrangian

D+ ! K�K+K+

of SU(3) mesons. ChPT is fully suited for describing these effective processes. The primary

weak decay is then followed by purely hadronic final state interactions (FSIs), in which the

mesons produced initially rescatter in many different ways, before being detected. The decay

D+ → K−K+K+ is doubly-Cabibbo-suppressed and any model describing it should involve

a combination of these two parts, as suggested by Fig.1.
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FIG. 1: Amplitude T for D+ → K−K+K+: (a) primary weak vertex; (b) weak vertex dressed by

final state interactions, the full line is the D, dashed lines are pseudoscalars.

In this work we allow for the coupling of intermediate states and, within the (2 + 1)

approximation, final state interactions are always associated with loops describing two-

meson propagators. This provides a topological criterion for distinguishing the primary

weak vertex from FSIs, namely that the former is represented by tree diagrams and the

latter by a series with any number of loops. Each of these loops is multiplied by a tree-level

scattering amplitude K and, schematically, this allows the decay amplitude T to be written

as

T = (weak tree) ×
[

1 + (loop×K) + (loop×K)2 + (loop×K)3 + · · ·
]

. (2)

The term within square brackets involves strong interactions only and represents a geometric

series for the FSIs, which can be summed. Denoting this sum by S, one has S = 1/[1 −

(loop×K)], which corresponds to the model prediction for the resonance line shape.
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FIG. 2: Competing topologies for the decay D+ → K−K+K+; the pair P aP b is produced either

after (a) or before (b) the weak interaction.
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 hypothesis that annihilation is dominant  

of SU(3) mesons. ChPT is fully suited for describing these effective processes. The primary

weak decay is then followed by purely hadronic final state interactions (FSIs), in which the

mesons produced initially rescatter in many different ways, before being detected. The decay

D+ → K−K+K+ is doubly-Cabibbo-suppressed and any model describing it should involve

a combination of these two parts, as suggested by Fig.1.

K

K

K

+

+

−

3

2

1

K

K

K

+

+

−

3

2

1

K

K

K

+

+

−

3

2

1

(a)

= + b

a

(b)

WWT

FIG. 1: Amplitude T for D+ → K−K+K+: (a) primary weak vertex; (b) weak vertex dressed by

final state interactions, the full line is the D, dashed lines are pseudoscalars.

In this work we allow for the coupling of intermediate states and, within the (2 + 1)

approximation, final state interactions are always associated with loops describing two-

meson propagators. This provides a topological criterion for distinguishing the primary

weak vertex from FSIs, namely that the former is represented by tree diagrams and the

latter by a series with any number of loops. Each of these loops is multiplied by a tree-level

scattering amplitude K and, schematically, this allows the decay amplitude T to be written

as

T = (weak tree) ×
[

1 + (loop×K) + (loop×K)2 + (loop×K)3 + · · ·
]

. (2)

The term within square brackets involves strong interactions only and represents a geometric

series for the FSIs, which can be summed. Denoting this sum by S, one has S = 1/[1 −

(loop×K)], which corresponds to the model prediction for the resonance line shape.
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FIG. 2: Competing topologies for the decay D+ → K−K+K+; the pair P aP b is produced either

after (a) or before (b) the weak interaction.

8

quarks c and d̄ in the D+ annihilate into a W+, which subsequently hadronizes. The primary

weak decay is followed by final state interactions, involving the scattering amplitude A. This

yields the decay amplitude T given in Fig.4, which includes the weak vertex and indicates

that the relationship with A is not straightforward, supporting statement a.dynamics, in

sect.II.
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FIG. 4: Decay amplitude forD+ → K−K+K+; the weak vertex proceeds thought the intermediate

steps D+ → W+ and W+ → K−K+K+ and strong final state interactions are encompassed by

the scattering amplitude A.

This decay amplitude is given by

T = −
[

GF√
2
sin2 θC

]

〈K−(p1)K
+(p2)K

+(p3)|Aµ| 0 〉 〈 0 |Aµ|D+(P )〉 , (4)

where GF is the Fermi decay constant, θC is the Cabibbo angle, the Aµ are axial currents

and P = p1 + p2 + p3 . Throughout the paper, the label 1 refers to the K−, the label 3 the

spectator K+ and kinematical relations are given in appendix A.

Denoting the D+ decay constant by FD, we write 〈 0 |Aµ|D+(P )〉 = −i
√
2FD Pµ and

find a decay amplitude proportional to the divergence of the remaining axial current, given

by

T = i

[

GF√
2
sin2 θC

] √
2FD [Pµ 〈Aµ〉] , (5)

with 〈Aµ〉 = 〈K−(p1)K+(p2)K+(p3)|Aµ| 0 〉. This result is important because, if SU(3)

were an exact symmetry, the axial current would be conserved and the amplitude T would

vanish. As the symmetry is broken by the meson masses, one has the partial conservation

of the axial current (PCAC) and T must be proportional to M2
K . In the expressions below,

this becomes a signature of the correct implementation of the symmetry.

The rich dynamics of the decay amplitude T is incorporated in the current 〈Aµ〉 and

displayed in Fig.5. Diagrams are evaluated using the techniques described in Refs.[45, 46]. In

10

predict KK scattering
amplitude

fit the model to LHCb data 

JHEP 1904 (2019) 063

run 1 (8 TeV CM) 2 fb−1

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH (CERN)

CERN-EP-2016-176
LHCb-PAPER-2016-022

July 20, 2016

Study of B+
c decays to the K+K�⇡+

final state and evidence for the decay

B+
c ! �c0⇡

+

The LHCb collaboration†

Abstract

A study of B+
c ! K+K�⇡+ decays is performed for the first time using data

corresponding to an integrated luminosity of 3.0 fb�1 collected by the LHCb ex-
periment in pp collisions at centre-of-mass energies of 7 and 8TeV. Evidence for
the decay B+

c ! �c0(! K+K�)⇡+ is reported with a significance of 4.0 stan-

dard deviations, resulting in the measurement of �(B+
c )

�(B+) ⇥ B(B+
c ! �c0⇡+) to be

(9.8+3.4
�3.0(stat)± 0.8(syst))⇥ 10�6. Here B denotes a branching fraction while �(B+

c )
and �(B+) are the production cross-sections for B+

c and B+ mesons. An indication
of bc weak annihilation is found for the region m(K�⇡+) < 1.834GeV/c2, with a
significance of 2.4 standard deviations.

Submitted to Phys. Rev. Lett.

c� CERN on behalf of the LHCb collaboration, license CC-BY-4.0.

†Authors are listed at the end of this article.
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annihilation hypothesis
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Figure 8: (left) Magnitude and (right) phase of the total S-wave from the result of the Dalitz plot
fit with the isobar model. The black line corresponds to model A and the green band represents
the statistical and systematic uncertainties added in quadrature. For comparison, the results of
models B and C are shown as the blue solid and dashed thick red lines. Uncertainties on the
S-wave magnitude and phase for models B and C are similar to those from model A and are not
shown.

7 Dalitz plot analysis with the Triple-M amplitude

Figure 9: Diagrams representing the two quark-level topologies for the D+! K�K+K+ decay.
In the Triple-M [3], diagram (a) is assumed to be the dominant mechanism of the decay,
whereas diagram (b) is suppressed since the production of a K+K� pair from a dd̄ pair requires
rescattering.

The basic hypothesis of the Triple-M is the dominance of the annihilation diagram
shown in Fig. 9(a). The D+ ! K�K+K+ decay can also proceed via the diagram
in Fig. 9(b), but in this case a K+K� pair could only be produced from the dd̄ pair
through rescattering, since charged kaons have no d-valence quark. The same holds for
the production of the �(1020) meson which is essentially an ss̄ state [21].

Assuming the annihilation diagram is the dominant mechanism for theD+! K�K+K+

decay, the Triple-M amplitude is a product of two axial-vector currents,

hK�K+K+|T |D+i = �

GFp
2
sin2 ✓C

�
hK�K+K+|Aµ|0ih0|Aµ|D+i , (8)

where GF is the Fermi decay constant, ✓C is the Cabibbo angle and Aµ are the axial
currents. The weak vertex is h 0 |Aµ|D+(P )i = �i

p
2 fD Pµ, where P = p1 + p2 + p3 is

the D+ four-momentum and fD is the D+ decay constant.

12

h 0 |Aµ|D+(P )i=�iGF sin2 ✓C FD Pµ
<latexit sha1_base64="DXBN0+jt/+O3o3bJnc5LXeXFVyo="></latexit><latexit sha1_base64="DXBN0+jt/+O3o3bJnc5LXeXFVyo="></latexit><latexit sha1_base64="DXBN0+jt/+O3o3bJnc5LXeXFVyo="></latexit><latexit sha1_base64="DXBN0+jt/+O3o3bJnc5LXeXFVyo="></latexit>

separate the different energy scales: 

know how to calculate everything

T = h(KKK)+|T |D+i = h(KKK)+|Aµ|0i| {z }
h0|Aµ|D+i.

<latexit sha1_base64="k89qE/PE5Q9MRdHXggguvlYPiqI="></latexit><latexit sha1_base64="k89qE/PE5Q9MRdHXggguvlYPiqI="></latexit><latexit sha1_base64="k89qE/PE5Q9MRdHXggguvlYPiqI="></latexit>

ChPT

both are doubly Cabibbo-suppressed

 hypotheses that annihilation is dominant  

of SU(3) mesons. ChPT is fully suited for describing these effective processes. The primary

weak decay is then followed by purely hadronic final state interactions (FSIs), in which the

mesons produced initially rescatter in many different ways, before being detected. The decay

D+ → K−K+K+ is doubly-Cabibbo-suppressed and any model describing it should involve

a combination of these two parts, as suggested by Fig.1.
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FIG. 1: Amplitude T for D+ → K−K+K+: (a) primary weak vertex; (b) weak vertex dressed by

final state interactions, the full line is the D, dashed lines are pseudoscalars.

In this work we allow for the coupling of intermediate states and, within the (2 + 1)

approximation, final state interactions are always associated with loops describing two-

meson propagators. This provides a topological criterion for distinguishing the primary

weak vertex from FSIs, namely that the former is represented by tree diagrams and the

latter by a series with any number of loops. Each of these loops is multiplied by a tree-level

scattering amplitude K and, schematically, this allows the decay amplitude T to be written

as

T = (weak tree) ×
[

1 + (loop×K) + (loop×K)2 + (loop×K)3 + · · ·
]

. (2)

The term within square brackets involves strong interactions only and represents a geometric

series for the FSIs, which can be summed. Denoting this sum by S, one has S = 1/[1 −

(loop×K)], which corresponds to the model prediction for the resonance line shape.
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quarks c and d̄ in the D+ annihilate into a W+, which subsequently hadronizes. The primary

weak decay is followed by final state interactions, involving the scattering amplitude A. This

yields the decay amplitude T given in Fig.4, which includes the weak vertex and indicates

that the relationship with A is not straightforward, supporting statement a.dynamics, in

sect.II.
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FIG. 4: Decay amplitude forD+ → K−K+K+; the weak vertex proceeds thought the intermediate

steps D+ → W+ and W+ → K−K+K+ and strong final state interactions are encompassed by

the scattering amplitude A.

This decay amplitude is given by

T = −
[

GF√
2
sin2 θC

]

〈K−(p1)K
+(p2)K

+(p3)|Aµ| 0 〉 〈 0 |Aµ|D+(P )〉 , (4)

where GF is the Fermi decay constant, θC is the Cabibbo angle, the Aµ are axial currents

and P = p1 + p2 + p3 . Throughout the paper, the label 1 refers to the K−, the label 3 the

spectator K+ and kinematical relations are given in appendix A.

Denoting the D+ decay constant by FD, we write 〈 0 |Aµ|D+(P )〉 = −i
√
2FD Pµ and

find a decay amplitude proportional to the divergence of the remaining axial current, given

by

T = i

[

GF√
2
sin2 θC

] √
2FD [Pµ 〈Aµ〉] , (5)

with 〈Aµ〉 = 〈K−(p1)K+(p2)K+(p3)|Aµ| 0 〉. This result is important because, if SU(3)

were an exact symmetry, the axial current would be conserved and the amplitude T would

vanish. As the symmetry is broken by the meson masses, one has the partial conservation

of the axial current (PCAC) and T must be proportional to M2
K . In the expressions below,

this becomes a signature of the correct implementation of the symmetry.

The rich dynamics of the decay amplitude T is incorporated in the current 〈Aµ〉 and

displayed in Fig.5. Diagrams are evaluated using the techniques described in Refs.[45, 46]. In
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 solid theory to describe MM interactions at low energy

NLO:  include resonances as a field
 Ecker, Gasser, Pich and De Rafael

[Nucl. Phys. B321(1989)]  

21 CAPÍTULO 2. AMPLITUDE DE ESPALHAMENTO Kπ

acoplam aos pseudoescalares, no contexto de SU(3). A vantagem desta abordagem, em

comparação com cálculos de O(q4) em ChPT[58], é que ela permite estender o alcance da

teoria a energias mais altas.

O termo da lagrangiana[22] que descreve a interação entre ressonâncias escalares e

mésons pseudoescalares é dado por:

L(2)
S =

2 c̃d
F 2

R0 ∂µφi ∂
µφi −

4 c̃m
F 2

B R0 (σ0 δij + σ8 d8ij) φi φj (2.5)

+
2 cd√
2F 2

dijk Rk ∂µφi ∂
µφi −

4Bcm√
2F 2

[

σ0 dijk + σ8

(

2

3
δik δj8 + di8s djsk

)]

φi φjRk ;

em que c̃d, c̃m e cd, cm são as constantes de acoplamento estre os mésons pseudoescalares e

as ressonâncias escalares R0, singleto, e Rk, membro do octeto, que precisam ser fixadas.

Essa lagrangiana também foi usada para o sistemaKπ na referência [14], na qual os valores

para cd e cm foram estimados, impondo a saturação das constantes de baixa energia pelas

ressonâncias. Os autores obtiveram os valores:

|cd| = 30± 10MeV ; |cm| = 43± 14MeV ; (2.6)

muito próximos dos obtidos em [22], |cd| = 32 MeV e |cm| = 42 MeV, extráıdos do

decaimento a0 → η π. Os valores de c̃d e c̃m foram definidos, como em [22], impondo o

v́ınculo dado pelo limite de grande Nc: |c̃d| = |cd|/
√
3 e |c̃m| = |cm|/

√
3.

A lagrangiana da interação de ressonâncias vetoriais e mésons pesudoescalares,

também proposta em [22], é dada por:

L(2)
V =

iGV√
2
〈Vµνu

µuν〉 ; (2.7)

〈Vµνu
µuν〉 =

1

F 2
V µν
a ∂µφi ∂νφj (ifaij + daij); (2.8)

em que V µν
a é um elemento do octeto vetorial. No caso das ressonâncias com estranheza,

a = 6, 7, temos:

〈Vµνu
µuν〉 =

√
2

F 2

[(

∂µπ
− ∂νK

+ −
1√
2
∂µπ

0 ∂νK
0

)

K̄∗µν

+

(

∂µK
− ∂νπ

+ −
1√
2
∂µK̄

0 ∂νπ
0

)

K∗µν
]

+ ... (2.9)

sendo GV uma constante de acoplamento universal que, no limite de grande Nc, pode ser

aproximada para GV = fπ/
√
2 = 65.3 MeV[66]. Nesse trabalho usamos GV = fKπ/

√
2 =

72.63 MeV, que também está dentro do intervalo de valores dispońıveis na literatura[14].
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L(2)
V =

iGV√
2
〈Vµνu

µuν〉 ; (2.7)

〈Vµνu
µuν〉 =

1

F 2
V µν
a ∂µφi ∂νφj (ifaij + daij); (2.8)

em que V µν
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LO:

2.1. AMPLITUDE EM ÁRVORE 20

Termo de contado

O termo de contato é descrito pela lagrangiana efetiva quiral proposta por Gasser e

Leutwyler [21]:

L(2)
M = 3F 2B σ0

+
1

2
∂µφi ∂

µφi −B (σ0 δij + σ8 d8ij) φi φj

−
1

6F 2
fijs fkls φi ∂µφj φk ∂

µφl +
B

24F 2

[

σ0

(

4

3
δij δkl+2 dijs dkls

)

+ σ8

(

4

3
δij dkl8+

4

3
dij8 δkl+2 dijm dkln d8mn

)]

φi φj φk φl , (2.2)

em que F é a constante de decaimento dos mésons no vácuo, φi são os bósons de

Goldstone de SU(3) e dijk e fijs são, respectivamente, as constantes de estrutura simétrica

e antissimétrica de SU(3). Todas as relações e estruturas que envolvem o grupo de

Lie SU(3) estão detalhadas no apêndice B.1. A primeira linha dessa lagrangiana está

associada à quebra espontânea de simetria quiral e é o termo responsável por conferir

massas aos pseudoescalares; a segunda corresponde à propagação livre e, as demais, a

auto interações, responsáveis pelo termo de contato Kπ → Kπ.

A amplitude de contato derivada da lagrangiana 2.2 é:

iTC = i 2 [Aabcd (u− t)−Aacbd (s− u)− Aadbc (s− t)]

+i 8 [Babcd +Bacbd +Badbc] ;

Aijkl = −
1

6F 2
fijs fkls , (2.3)

Bijkl =
B

24F 2

[

σ0

(

4

3
δij δkl + 2 dijs dkls

)

+ σ8

(

4

3
δij dkl8 +

4

3
dij8 δkl + 2 dijm dkln d8mn

)]

. (2.4)

Ressonâncias

As contribuições dos diagramas S e V , na fig.2.1, são dadas por trocas de ressonâncias

escalares ou vetoriais nos canais s, t e u. Todas as interações relevantes podem ser descritas

pela lagrangiana proposta em [22], na qual as ressonâncias também são campos que se
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FIG. 5: Dynamical structure of triangle vertices in Fig.4; the wavy line is the W+, dashed lines

are mesons, continuous lines are resonances and the full red blob represent meson-meson scattering

amplitudes, described in Fig.6; all diagrams within square brackets should be symmetrized, by

making 2 ↔ 3.

chiral perturbation theory, the primary couplings of the W+ to the K−K+K+ system always

involve a direct interaction, accompanied by a kaon-pole term, denoted by (A) and (B) in

the figure. Only their joint contribution is compatible with PCAC. Diagrams (1A+1B) are

LO and describe a non-resonant term, a proper three body interaction, which goes beyond

the (2 + 1) approximation, whereas Figs. (2A+2B) allow for the possibility that two of the

mesons rescatter, after being produced in the primary weak vertex. Diagrams (3A+3B) are

NLO and describe the production of bare resonances at the weak vertex, whereas final state

rescattering processes (4A+4B) endow them with widths.

A. two-body unitarization and resonance line shapes

In the description of the two-body subsystem, we consider just S- and P - waves, corre-

sponding to (J = 1, 0, I = 1, 0) spin-isospin channels. The associated resonances are ρ(770),

φ(1020), a0(980), and two SU(3) scalar-isoscalar states, S1 and So, corresponding to a sin-

glet and to a member of an octet, respectively. The physical f0(980), together with a higher

mass f0 state, would be linear combinations of S1 and So. Depending on the channel, the

intermediate two-meson propagators may involve ππ, KK, ηη, and πη intermediate states,

so there is a large number of coupled channels to be considered.
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mesons rescatter, after being produced in the primary weak vertex. Diagrams (3A+3B) are

NLO and describe the production of bare resonances at the weak vertex, whereas final state

rescattering processes (4A+4B) endow them with widths.

A. two-body unitarization and resonance line shapes

In the description of the two-body subsystem, we consider just S- and P - waves, corre-

sponding to (J = 1, 0, I = 1, 0) spin-isospin channels. The associated resonances are ρ(770),

φ(1020), a0(980), and two SU(3) scalar-isoscalar states, S1 and So, corresponding to a sin-

glet and to a member of an octet, respectively. The physical f0(980), together with a higher

mass f0 state, would be linear combinations of S1 and So. Depending on the channel, the

intermediate two-meson propagators may involve ππ, KK, ηη, and πη intermediate states,

so there is a large number of coupled channels to be considered.
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the figure. Only their joint contribution is compatible with PCAC. Diagrams (1A+1B) are

LO and describe a non-resonant term, a proper three body interaction, which goes beyond

the (2 + 1) approximation, whereas Figs. (2A+2B) allow for the possibility that two of the

mesons rescatter, after being produced in the primary weak vertex. Diagrams (3A+3B) are

NLO and describe the production of bare resonances at the weak vertex, whereas final state

rescattering processes (4A+4B) endow them with widths.
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mass f0 state, would be linear combinations of S1 and So. Depending on the channel, the
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so there is a large number of coupled channels to be considered.

11

KK̄= + + + ...
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FIG. 6: (a) Tree-level two-body interaction kernel K(J,I)
ab→cd - a NLO s-channel resonance, added to

a LO contact term. (b) Structure of the unitarized scattering amplitude.

The basic meson-meson intermediate interactions P aP b → P cP d are described by kernels

K(J,I)
ab|cd and their simple dynamical structure is shown in Fig.6, as LO four point terms, typical

of chiral symmetry, supplemented by NLO resonance exchanges in the s-channel. Just in

the (J = 0, I = 0) channel two resonances, S1 and So, are needed. In these diagrams, all

vertices represent interactions derived from chiral lagrangians[46]. Kernels are then functions

depending on just masses and coupling constants. The mathematical structure of these

functions is displayed in App.F. In the case of the φ-meson, the kernel includes an effective

coupling to the (ρπ+πππ) channel, which accounts for about 15% of its width. This effective

interaction is discussed in App.(C) and yields eq.(F6).

All other resonance terms in the kernels contain bare poles. However, the evaluation of

amplitudes involves the iteration of the basic kernels by means of two-meson propagators,

as in Fig.6(b). The propagators, denoted by Ω̄, are discussed in App.B and, in principle,

they have both real and imaginary components. The former contain divergent contributions

and their regularization brings unknown parameters into the problem. This considerable

nuisance is avoided by working in the K-matrix approximation, whereby just the imaginary

parts of the two-meson propagators are kept. This gives rise to the structure sketched within

the square bracket of eq.(2), where the terms (loop×K) are realized by the functions M (J,I)
ij

given in eqs.(G10-G13). The ressummation of the geometric series, indicated in Fig.6(b),

endows the s-channel resonances with widths. Thus among other structures, intermediate

two-body amplitudes yield denominators D(J,I), which are akin to those of the form DBW =

[s − m2 + imΓ] employed in BW functions. These denominators, that correspond to the

predictions of the model for the resonance line shapes, are given in App.G and reproduced

12

coupled-channel unitary amplitude isospin decomposition [J, I = (0, 1), (0, 1)]
⇡⇡, ⌘⌘, ⇡⌘, ⇢⇡

and, therefore,

〈K−K+| = (i/2) 〈V KK
3 + V KK

8 |− (1/2) 〈UKK
3 + SKK |. (D14)

Appendix E: tree decay sub-amplitudes

In the evaluation of intermediate state contributions shown in diagrams of Fig.5, we need

tree level contribution for the process D → a bK+, denoted by T (J,I)
(0) , for spin J and isospin

I. In the results displayed below, the first terms correspond to resonances in diagrams

(3A+3B), whereas those within square brackets, labeled by c, represent contact interactions

in the top vertices of diagrams 2A and 2B. Using the constant C defined in eq.(22), we have

[J, I = 1, 1] → 〈V ab
3 K+| T (1,1)

(0) |D〉 =
i

2
(m2

13 −m2
23) Γ

(1,1)
(0) a b , (E1)

Γ(1,1)
(0) ππ = C

{[√
2G2

V

F 2

]

m2
12

m2
12 −m2

ρ

+

[

−
1√
2

]

c

}

, (E2)

Γ(1,1)
(0)KK = C

{[

G2
V

F 2

]

m2
12

m2
12 −m2

ρ

+

[

−
1

2

]

c

}

(E3)

[J, I = 1, 0] → 〈V KK
8 K+| T (1,0)

(0) |D〉 =
i

2
(m2

13 −m2
23) Γ

(1,0)
(0)KK , (E4)

Γ(1,0)
(0)KK = C

{

[

3G2
V

F 2
sin2θ

]

m2
12

Dπρ
φ (m2

12)
+

[

−
3

2

]

c

}

, (E5)

Here, the function Dπρ
φ is a partially dressed φ propagator, discussed in App.C, eq.(C18),

associated with the partial width of the decay φ → (ρπ + πππ).

[J, I = 0, 1] → 〈Uab
3 K+| T (0,1)

(0) |D〉 = Γ(0,1)
(0) a b , (E6)

Γ(0,1)
(0) π8 = C

{[

2
√
2√

3F 2

]

[−cd P ·p3 + cm M2
D]

m2
12 −m2
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(

m2
12 −M2
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8

)

+ 2 cmM2
π

]
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[

−
√
3√
2

[
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D/3− P ·p3

]

]

c

}

, (E7)

Γ(0,1)
(0)KK = C

{[

2

F 2

]

[−cd P ·p3 + cmM2
D]

m2
12 −m2

a0

[

cd
(

m2
12 − 2M2

K

)

+ 2 cmM2
K

]
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parameter value

F 94.3+2.8
−1.7± 1.5MeV

ma0 947.7+5.5
−5.0± 6.6MeV

mSo 992.0+8.5
−7.5± 8.6MeV

mS1 1330.2+5.9
−6.5± 5.1MeV

mφ 1019.54+0.10
−0.10± 0.51MeV

Gφ 0.464+0.013
−0.009± 0.007

cd −78.9+4.2
−2.7± 1.9MeV

cm 106.0+7.7
−4.6± 3.3MeV

c̃d −6.15+0.55
−0.54± 0.19MeV

c̃m −10.8+2.0
−1.5± 0.4MeV

Table 3. Results of the D+ → K−K+K+ Dalitz plot fit with the Triple-M amplitude.
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Figure 11. Projections of the Dalitz plot onto (top left) sK+K− , (top right) sK+K+ , (bottom left)
shighK+K− and (bottom right) slowK+K− axes, with the fit result with the Triple-M amplitude superim-
posed, whereas the dashed green line is the phase space distribution weighted by the efficiency. The
magenta histogram represents the contribution from the background.

the fit result superimposed. The projections indicate that the model is in good agreement

with the data. The distribution of the normalised residuals over the Dalitz plot is shown

in the right panel of figure 12. The distribution of normalised residuals, shown in the left

panel of figure 12, is consistent with a normal Gaussian.
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FFNR FF00 FF01 FF10 FF11 FFS−wave

14 ± 1 29 ± 1 131 ± 2 7.1 ± 0.9 0.26 ± 0.01 94 ± 1

Table 4. Relative fractions (%) of the various components of the Triple-M amplitude. The uncer-
tainties correspond to the combined statistical and systematic uncertainties.

with

TS = TS
NR + T 00 + T 01 (7.5)

and

TP = TP
NR + T 11 + T 10 . (7.6)

The relative contribution of each individual component of the Triple-M amplitude is

determined by integrating the modulus squared of each term in the right-hand side of

eq. (7.2) over the phase space of the D+→ K−K+K+ decay,

FFNR =

∫
ds12 ds13 |TNR(s12, s13)|2∫
ds12 ds13 |T (s12, s13)|2

, FFJI =

∫
ds12 ds13 |T JI(s12, s13)|2∫
ds12 ds13 |T (s12, s13)|2

. (7.7)

Similarly, the S-wave contribution can be determined by the integral over the phase

space of the modulus squared of the TS component, defined in eq. (7.5), and divided by

the integral of the modulus squared of the decay amplitude T . The results are summarised

in table 4. There is a large destructive interference between the two scalar below-threshold

states, a0(980) and f0(980), yielding an S-wave contribution of (94 ± 1)%. The large

a0(980)/f0(980) interference may be, in part, due to the fact that in the K+K− mass

spectrum these two states have very similar lineshapes, since only the tails are visible.

This large interference is also observed in the fit with the isobar model C, yielding similar

fit fractions for the S-wave component. A more accurate determination of the relative

contribution of the a0(980) and f0(980) resonances could be obtained from a simultaneous

analysis of the D+ → π+π−π+ and D+ → ηπ+π0. The contribution of the φ(1020)

resonance, (7.1± 0.5)%, is consistent to that observed in the fit with the isobar model.

7.2.2 Decay and scattering amplitudes

The phases of the S-wave amplitude, TS , and the K+K− → K+K− scattering amplitudes,

A0I
K+K− , for the two allowed isospin states, are shown in figure 13 as a function of theK+K−

invariant mass. The bands correspond to the statistical and systematic uncertainties added

in quadrature. The kink in the phase of TS at m(K+K−) ∼ 1.25GeV is due to the opening

of the ηη channel. The curves of figure 13 illustrate the difference between decay and

scattering amplitudes. The latter, which depends on spin and isospin, is a substructure

of the former, which depends only on spin. The expressions of the various scattering

amplitudes, derived in ref. [3], are reproduced in appendix C.

The physics of two-body scattering is encompassed by the phase shifts and inelasticities.

These quantities are obtained from the scattering amplitudes, following the procedure

described in ref. [3]. The phase shifts, δJIK+K− , and inelasticities ηJIK+K− , are displayed in

figure 14 for J=0 and I=0, 1.
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Abstract

A study of B+
c ! K+K�⇡+ decays is performed for the first time using data

corresponding to an integrated luminosity of 3.0 fb�1 collected by the LHCb ex-
periment in pp collisions at centre-of-mass energies of 7 and 8TeV. Evidence for
the decay B+

c ! �c0(! K+K�)⇡+ is reported with a significance of 4.0 stan-

dard deviations, resulting in the measurement of �(B+
c )

�(B+) ⇥ B(B+
c ! �c0⇡+) to be

(9.8+3.4
�3.0(stat)± 0.8(syst))⇥ 10�6. Here B denotes a branching fraction while �(B+

c )
and �(B+) are the production cross-sections for B+

c and B+ mesons. An indication
of bc weak annihilation is found for the region m(K�⇡+) < 1.834GeV/c2, with a
significance of 2.4 standard deviations.
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Table 3. Results of the D+ → K−K+K+ Dalitz plot fit with the Triple-M amplitude.
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Figure 11. Projections of the Dalitz plot onto (top left) sK+K− , (top right) sK+K+ , (bottom left)
shighK+K− and (bottom right) slowK+K− axes, with the fit result with the Triple-M amplitude superim-
posed, whereas the dashed green line is the phase space distribution weighted by the efficiency. The
magenta histogram represents the contribution from the background.

the fit result superimposed. The projections indicate that the model is in good agreement

with the data. The distribution of the normalised residuals over the Dalitz plot is shown

in the right panel of figure 12. The distribution of normalised residuals, shown in the left

panel of figure 12, is consistent with a normal Gaussian.
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14 ± 1 29 ± 1 131 ± 2 7.1 ± 0.9 0.26 ± 0.01 94 ± 1

Table 4. Relative fractions (%) of the various components of the Triple-M amplitude. The uncer-
tainties correspond to the combined statistical and systematic uncertainties.

with

TS = TS
NR + T 00 + T 01 (7.5)

and

TP = TP
NR + T 11 + T 10 . (7.6)

The relative contribution of each individual component of the Triple-M amplitude is

determined by integrating the modulus squared of each term in the right-hand side of

eq. (7.2) over the phase space of the D+→ K−K+K+ decay,

FFNR =

∫
ds12 ds13 |TNR(s12, s13)|2∫
ds12 ds13 |T (s12, s13)|2

, FFJI =

∫
ds12 ds13 |T JI(s12, s13)|2∫
ds12 ds13 |T (s12, s13)|2

. (7.7)

Similarly, the S-wave contribution can be determined by the integral over the phase

space of the modulus squared of the TS component, defined in eq. (7.5), and divided by

the integral of the modulus squared of the decay amplitude T . The results are summarised

in table 4. There is a large destructive interference between the two scalar below-threshold

states, a0(980) and f0(980), yielding an S-wave contribution of (94 ± 1)%. The large

a0(980)/f0(980) interference may be, in part, due to the fact that in the K+K− mass

spectrum these two states have very similar lineshapes, since only the tails are visible.

This large interference is also observed in the fit with the isobar model C, yielding similar

fit fractions for the S-wave component. A more accurate determination of the relative

contribution of the a0(980) and f0(980) resonances could be obtained from a simultaneous

analysis of the D+ → π+π−π+ and D+ → ηπ+π0. The contribution of the φ(1020)

resonance, (7.1± 0.5)%, is consistent to that observed in the fit with the isobar model.

7.2.2 Decay and scattering amplitudes

The phases of the S-wave amplitude, TS , and the K+K− → K+K− scattering amplitudes,

A0I
K+K− , for the two allowed isospin states, are shown in figure 13 as a function of theK+K−

invariant mass. The bands correspond to the statistical and systematic uncertainties added

in quadrature. The kink in the phase of TS at m(K+K−) ∼ 1.25GeV is due to the opening

of the ηη channel. The curves of figure 13 illustrate the difference between decay and

scattering amplitudes. The latter, which depends on spin and isospin, is a substructure

of the former, which depends only on spin. The expressions of the various scattering

amplitudes, derived in ref. [3], are reproduced in appendix C.

The physics of two-body scattering is encompassed by the phase shifts and inelasticities.

These quantities are obtained from the scattering amplitudes, following the procedure

described in ref. [3]. The phase shifts, δJIK+K− , and inelasticities ηJIK+K− , are displayed in

figure 14 for J=0 and I=0, 1.
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Figure 10. Diagrams contributing to the amplitude T for the decay D+ → K− K+ K+: (a) the
final state kaons are produced directly from the weak vertex; (b) a bare resonance is produced
directly from the weak vertex; (c) particles produced at the weak vertex undergo final state
interactions; (d) final state interactions endow finite widths to the resonances. The full circle
represents the unitary ab → K+K− scattering amplitude with angular momentum J and isospin
I, and ab = KK, ππ, ηπ and ηη.

ma0 , in the scalar-isovector T 01 components; one coupling, GV , for the vector components,

T 10 and T 11, and one mass, mφ, in the vector-isoscalar component. In the fit to the data,

the combination Gφ ≡ GV sin θω−φ/F is used as free parameter, where θω−φ is the ω − φ

mixing angle. The parameter F is the SU(3) pseudoscalar decay constant, common to

all components. For convenience, the formulae of the various components of the Triple-M

amplitude are reproduced from ref. [3] in appendix B.

Equation (7.2) resembles that of the isobar model, but there are several significant

differences. The free parameters in the Triple-M amplitude are real quantities from the

chiral Lagrangian. Some of these parameters appear in different spin-isospin components

of the model. In the isobar model the free parameters are the complex coefficients ck,

from which the individual contributions of the resonances are determined. In the Triple-M

amplitude, the relative contributions of the various components are fixed by theory. The

nonresonant component is usually represented by an empirical constant in fits with the

isobar model. In the Triple-M amplitude, it is a function of the Dalitz plot coordinates

and is fully determined by chiral symmetry.

7.1 Fit results

The optimum values of the Triple-M parameters are determined by an unbinned maximum-

likelihood fit, as described in section 5. The fitted values of the Triple-M parameters are

listed in table 3, with statistical and systematic uncertainties.

The quality of the fit with the Triple-M amplitude is tested with the metric defined in

eq. (5.4). The value of χ2/ndof is 1.12. The projections of the Dalitz plot onto the sK+K−

and the sK+K+ axes, as well as the projections onto the highest and lowest invariant masses

squared of the two K+K− combinations, shighK+K− and slowK+K− , are shown in figure 11, with
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Tool kit for meson-meson interactions in 3-body decay 
MAGALHAES, A.dos Reis, Robilotta 

PRD 102, 076012 (2020)Any 3-body decay amplitude

D = 1− (loop×K) . (7)

As discussed in the sequence, 1/D is the post-QCD version of the BW line shape, eq.(2).

A very important feature of this result is that the amplitude A is unitary. This property

is quite general and derives from the structure of the denominator D, which is suitably

complex owing to the well defined imaginary function ΩI in eq.(4). The forms adopted for

both ΩR and K, provided it is real, are irrelevant for this property of A. This justifies the

widespread use of the K-matrix approximation, which is implemented by neglecting ΩR and

writing

K−matrix → loop = 0 + iΩI . (8)

+=

+=(b)

(a) +T W WW
F

A

AF

FIG. 5: (a) Decay amplitude in the 2 + 1 approximation; (b) form factor.

The amplitude A is a key element in the description of heavy-meson decays, for they

are present in the FSIs which supplement the weak process of fig.1. Strong interactions

involving three bodies can be very complicated. The simplest class of FSIs corresponds to

the (2 + 1) approximation, represented in fig.5, in which the first diagram in (a) represents

the non-resonant contribution and the other two include particle interactions with one of the

final mesons as a spectator. Structure (a) represents the heavy meson decay amplitude in

the (2 + 1) approximation and the blob indicated by F is usually called form factor, which

many authors take as the single contribution to the decay [23]. It is isolated in fig.(b) and,

denoting by g the resonance-pseudoscalar coupling constant, the function F can be related

to the meson-meson scattering amplitude by

F = g [1 + (loop× A)] = g
1

D
, (9)
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in fig.4 (a), and it is a real function because, at this point we are still dealing with a bare

resonance, described by a pole at its mass. The tree amplitude is then given by A0 = K0.
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second perturbative correction; (d) full amplitude.

The single-loop correction is shown in fig.(b) and involves three terms, in s, t and u

channels. The first one involves a two-meson s-channel propagator, whereas the last two do

not and are grouped into a new kernelK1. The case of two loops is shown in fig. (c), whereK2

is a higher order kernel and the s-channel is represented by three successive K0 interactions.

Repeating this indefinitely and adding the results, we obtain a scattering amplitude of the

form

A = K ×
[
1 + (loop×K) + (loop×K)2 + (loop×K)3 + · · ·

]
, (3)

loop = ΩR + iΩI , (4)

K = K0 +K1 +K2 + · · · . (5)

The geometric series in eq.(3) can be summed and one has

A =
K
D

, (6)
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meson-meson

D = 1− (loop×K) . (7)

As discussed in the sequence, 1/D is the post-QCD version of the BW line shape, eq.(2).

A very important feature of this result is that the amplitude A is unitary. This property

is quite general and derives from the structure of the denominator D, which is suitably

complex owing to the well defined imaginary function ΩI in eq.(4). The forms adopted for

both ΩR and K, provided it is real, are irrelevant for this property of A. This justifies the

widespread use of the K-matrix approximation, which is implemented by neglecting ΩR and

writing

K−matrix → loop = 0 + iΩI . (8)
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final mesons as a spectator. Structure (a) represents the heavy meson decay amplitude in

the (2 + 1) approximation and the blob indicated by F is usually called form factor, which

many authors take as the single contribution to the decay [23]. It is isolated in fig.(b) and,

denoting by g the resonance-pseudoscalar coupling constant, the function F can be related

to the meson-meson scattering amplitude by
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1
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Form factor

(2+1) approach

where D is the denominator given in (7). The imaginary part of D gives rise to a finite

width to the resonance.

In order to go beyond the (2 + 1) approximation, one would need to tackle a rather

complicated three-body problem, which involves both multiple scattering series and proper

three-body interactions, as indicated in Fig.6. It is worth stressing that these FSIs are not a

matter of choice, since they are compulsory contributions to the problem. Part of this sector

can be tackled by means of Fadeev techniques[8] or Khuri-Treiman formalism [10, 34] but

this kind of effort is still incipient to describe the full dynamics of heavy mesons nonleptonic

decays.
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FIG. 6: Decay amplitude: 2 + 1 approximation, supplemented by three-body interactions.

In summary, the decay of a heavy meson into three light mesons involves two distinct

sectors, a weak primary vertex and a structure of final state strong interactions. Although

the former is not simple, the latter may be expected to be much more complicated and

progress in the area depends on the definition of a hierarchy among strong problems. The

simplest subset of problems is provided by the (2 + 1) approximation, which depends on

meson-meson scattering amplitudes and even these two-body interaction are not sufficiently

well known for systems involving pions, kaons and etas, within the phase space provided by

D and B decays.

III. SCATTERING AMPLITUDES

In this work we present a practical model for the inclusion of any number of resonances

in phenomenological meson-meson scattering amplitudes, so that they can be used as trial

functions in more complicated reactions, such as heavy -mesons or τ decays. Instead of
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In this work we present a practical model for the inclusion of any number of resonances

in phenomenological meson-meson scattering amplitudes, so that they can be used as trial

functions in more complicated reactions, such as heavy -mesons or τ decays. Instead of

12Available to be implement in data analysis!!

includes multiple resonances in the same channel (as many as wanted)

free parameter (massas and couplings) to be fitted to data.
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The single-loop correction is shown in fig.(b) and involves three terms, in s, t and u

channels. The first one involves a two-meson s-channel propagator, whereas the last two do

not and are grouped into a new kernelK1. The case of two loops is shown in fig. (c), whereK2

is a higher order kernel and the s-channel is represented by three successive K0 interactions.

Repeating this indefinitely and adding the results, we obtain a scattering amplitude of the

form

A = K ×
[
1 + (loop×K) + (loop×K)2 + (loop×K)3 + · · ·

]
, (3)

loop = ΩR + iΩI , (4)

K = K0 +K1 +K2 + · · · . (5)

The geometric series in eq.(3) can be summed and one has

A =
K
D

, (6)
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provide the building block in SU(3)
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ππ amplitude 3 coupled-channels: , KK and ππ ηη
3 resonances:  mx=0.98, my=1.37, mz=1.7 GeV
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FIG. 18: Predictions for phase shifts(left) and inelasticity parameters(right) of the scalar πpi

amplitude with an extra resonance of mass mf0 = 1.7GeV; the case α = β = 0 corresponds to the

blue curve of fig.13.
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FIG. 19: Predictions for phase shifts(left) and inelasticity parameters(right) of the scalar-isovector

πK amplitude with an extra a resonance of mass mK∗
0
= 1.7GeV; the case α = β = 0 corresponds

to the blue curve of fig.16.

into three mesons, this model relies on the (2+1) approximation, whereby strong final state

interactions involve just a two-body interacting system in the presence of a spectator. The

assumption that two-meson amplitudes are strongly dominated by resonances is essential

to the model. We argue that QCD has a strong impact on this picture and that the SIM

may be reliable for vector mesons in uncoupled channels but is not suited to scalar mesons.

Nowadays a proper description of low-energy meson-meson interactions requires the use

of chiral perturbation theory, which implements the ideas of QCD by means of effective

lagrangians. In Sect. IV we have shown that the SIM and its post-QCD version give

30

𝛼 and β are couplings from mz 
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resonance, described by a pole at its mass. The tree amplitude is then given by A0 = K0.
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The single-loop correction is shown in fig.(b) and involves three terms, in s, t and u

channels. The first one involves a two-meson s-channel propagator, whereas the last two do

not and are grouped into a new kernelK1. The case of two loops is shown in fig. (c), whereK2

is a higher order kernel and the s-channel is represented by three successive K0 interactions.

Repeating this indefinitely and adding the results, we obtain a scattering amplitude of the

form

A = K ×
[
1 + (loop×K) + (loop×K)2 + (loop×K)3 + · · ·

]
, (3)

loop = ΩR + iΩI , (4)

K = K0 +K1 +K2 + · · · . (5)

The geometric series in eq.(3) can be summed and one has

A =
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D
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extra res do not disturb the low-energy!

parameter should be fixed by data

will apply this methodology in other D → hhh
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Final remarks

A consistent treatment of FSI  is crucial to reach precision in D → hhh
two-body coupled-channels description in mandatory 

 relevant for CPV search 

a proper 2-body FSI have impact in both (2+1) and 3-body

gracias!
#foraBOLSONARO

A full description of ANA need both weak and strong description

   huge data 
samples on their way claiming for 

accurate models!

D+ → h+h−h+

: example of theory/experimental join workD+ → KKK

tool kit for amplitude analysis 
with theoretically sound models 

to  ANAD → hhh

mailto:pmagalhaes@cbpf.br


p.magalhaes@cern.chMulti-Meson-Model for ANA

21

Hadrons 2021

Backup slides !
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QCDF
QCD factorization approach  factorize the quark currents

ex: B+ ! ⇡+⇡�⇡+

A ~

8

∑

p=u,c

λp
〈

π−(p1)[π
+(p2)π

−(p3)]D|Tp|B−
〉

= XD u(RDπ
−). (12)

In Eq. (7) the chiral factor rπχ is given by rπχ = 2m2
π/[(mb+mu)(mu+md)],

mu and md being the u and d quark masses, respectively. The long distance
functions XS,P,D and YS,P , evaluated in Appendix A, read

XS ≡
〈

[π+(p2)π
−(p3)]S |(ūb)V−A|B−

〉 〈

π−(p1)|(d̄u)V−A|0
〉

= −
√

2

3
χS fπ (M2

B − s23) F
BRS
0 (m2

π) Γ
n∗
1 (s23), (13)

YS ≡
〈

π−(p1)|(d̄b)sc−ps|B−
〉 〈

[π+(p2)π
−(p3)]S |(d̄d)sc+ps|0

〉

=

√

2

3
B0

M2
B −m2

π

mb −md
FBπ
0 (s23) Γ

n∗
1 (s23), (14)

XP ≡
〈

[π+(p2)π
−(p3)]P |(ūb)V −A|B−

〉 〈

π−(p1)|(d̄u)V−A|0
〉

= NP
fπ
fRP

(s13 − s12) A
BRP
0 (m2

π) F
ππ
1 (s23), (15)

YP ≡
〈

π−(p1)|(d̄b)V−A|B−
〉 〈

[π+(p2)π
−(p3)]P |(ūu)V−A|0

〉

= (s13 − s12)F
Bπ
1 (s23)F

ππ
1 (s23), (16)

XD ≡
〈

[π+(p2)π
−(p3)]D|(ūb)V−A|B−

〉 〈

π−(p1)|(d̄u)V−A|0
〉

= −
fπ√
2
FBRD(m2

π)

√

2

3

Gf2D(s12, s23)

m2
RD

− s23 − imRD
Γ(s23)

, (17)

The different quantities entering the above equations are discussed below.
The S-wave strength parameter χS [Eq. (13)] will be fitted together

with the correction P -wave parameter NP [Eq. (15]. The deviation of NP

from 1 corresponds to the possible variation of the strength of this P -wave
amplitude proportional to fπ/fRP

[compare Eqs. (A.7) and (A.19)].
Three scalar-isoscalar f0 resonances, viz. f0(600), f0(980) and f0(1400),

are present in the ππ effective mass range, mππ, considered here. Since some
of them are wide, like f0(600), one could have a possible RS dependence
in χS. The transition form factor from B to RS , F

BRS
0 (m2

π), could also
depend on mππ. However, one expects these dependences to be weaker
than the effective mass dependence of the pion scalar form factor, Γn∗

1 (s23),
in which all these resonances are incorporated. Therefore we assume that
χS and FBRS

0 (m2
π) are constant. This hypothesis will be assessed by the

quality of the fit obtained with our model. We shall take RS ≡ f0(980) for
the evaluation of FBRS

0 (m2
π) and we use FBRS

0 (m2
π) = 0.13 [19].
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challenging for 3-body 
not all FSI and 3-body NR
scale issue with charm  !

Boito et al. PRD96 113003 (2017)   parametrizations for B and D→3h

naive factorization
R FF

- FSI with scalar and vector form factors FF
- intermediate by a resonance R;

how to describe it?

p2, respectively, can be written as,

〈M1(p1)M
∗
2 (p2)|Heff |B(pB)〉 =

GF√
2

VCKM

∑

i

Ci(µ)〈M1(p1)M
∗
2 (p2)|Oi(µ)|B(pB)〉 , (1)

where pB = p1 + p2, GF is the Fermi constant, VCKM is a product of Cabibbo-Kobayashi-

Maskawa (CKM) matrix elements, Ci(µ) are Wilson coefficients renormalized at the scale µ [26] and

M∗
2 (p2) is the resonant quasi-two body state which decays into two lighter mesons. The hadronic

amplitude 〈M1(p1)M∗
2 (p2)|Oi(µ)|B(pB)〉 describes long-distance physics. In the factorization ap-

proach we henceforth employ, this amplitude is the sum of two matrix-element products,

〈M1(p1)M
∗
2 (p2)|Oi(µ)|B(pB)〉 =

(

〈M1(p1)|Jν
1 |B(pB)〉〈M∗

2 (p2)|J2ν |0〉

+〈M1(p1)|Jν
3 |0〉〈M∗

2 (p2)|J4ν |B(pB)〉
)

[

1 +
∑

n

rnα
n
s (µ) +O

(

ΛQCD

mb

)

]

, (2)

where the strong coupling is evaluated at a scale µ, rn is a combination of constant strong interaction

factors, and |0〉 is the vacuum state. Thus, at leading order, the decay amplitudes factorize into

two matrix elements with either the weak quark currents J1 and J2 or J3 and J4. Radiative

corrections can be systematically taken into account to a given order αn
s (µ), whereas corrections to

the heavy-quark limit are of nonperturbative nature and therefore much less controlled. This is in

particular true for the charm quark which is neither a light nor a heavy enough quark [27–30]. This

fact makes the systematic improvements of Eq. (2), enclosed in square brackets, less reliable for D

decays. One should keep this limitation in mind but, for lack of a better theoretical framework, the

phenomenological approach to Eq. (2) remains a good starting point to organize the description of

D decays and can be used to provide a first step beyond the isobar model.

The weak effective Hamiltonian, Heff , in Eq. (1) is given by the sum of local operators Oi(µ)

multiplied by Wilson coefficients Ci(µ) which encode the short-distance effects above the renor-

malization scale µ. For a ∆B = 1 transition, for example, the Hamiltonian is given by [31, 32]

H∆B=1
eff =

GF√
2

∑

p=u,c

V ∗
pqVpb

[

C1(µ)O
p
1(µ) + C2(µ)O

p
2(µ) +

10
∑

i=3

Ci(µ)Oi(µ)

+ C7γ(µ)O7γ(µ) + C8g(µ)O8g(µ)
]

+ h.c. , (3)

where the quark flavor can be q = d, s and Vij are CKM matrix elements. In the decays, the weak

interaction W -boson exchange diagram gives rise to two current-current operators with different
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FIG. 6: (a) Tree-level two-body interaction kernel K(J,I)
ab→cd - a NLO s-channel resonance, added to

a LO contact term. (b) Structure of the unitarized scattering amplitude.

The basic meson-meson intermediate interactions P aP b → P cP d are described by kernels

K(J,I)
ab|cd and their simple dynamical structure is shown in Fig.6, as LO four point terms, typical

of chiral symmetry, supplemented by NLO resonance exchanges in the s-channel. Just in

the (J = 0, I = 0) channel two resonances, S1 and So, are needed. In these diagrams, all

vertices represent interactions derived from chiral lagrangians[46]. Kernels are then functions

depending on just masses and coupling constants. The mathematical structure of these

functions is displayed in App.F. In the case of the φ-meson, the kernel includes an effective

coupling to the (ρπ+πππ) channel, which accounts for about 15% of its width. This effective

interaction is discussed in App.(C) and yields eq.(F6).

All other resonance terms in the kernels contain bare poles. However, the evaluation of

amplitudes involves the iteration of the basic kernels by means of two-meson propagators,

as in Fig.6(b). The propagators, denoted by Ω̄, are discussed in App.B and, in principle,

they have both real and imaginary components. The former contain divergent contributions

and their regularization brings unknown parameters into the problem. This considerable

nuisance is avoided by working in the K-matrix approximation, whereby just the imaginary

parts of the two-meson propagators are kept. This gives rise to the structure sketched within

the square bracket of eq.(2), where the terms (loop×K) are realized by the functions M (J,I)
ij

given in eqs.(G10-G13). The ressummation of the geometric series, indicated in Fig.6(b),

endows the s-channel resonances with widths. Thus among other structures, intermediate

two-body amplitudes yield denominators D(J,I), which are akin to those of the form DBW =

[s − m2 + imΓ] employed in BW functions. These denominators, that correspond to the

predictions of the model for the resonance line shapes, are given in App.G and reproduced
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allowed by ChPTR. They are denoted by S1 and So and correspond, respectively, to a

singlet and to a member of an octet of SU(3), with the same quantum numbers. The

physical f0(980) and f0(1370) could then be linear combinations of S1 and So.

When the four spin-isospin channels are considered, the two-meson propagators can in-

volve ππ, KK, ηη and πη intermediate systems. This means that we may have a large

number of coupled channels and this makes the calculation cumbersome. The importance

of the coupled channels depends on the family of diagrams one is dealing with. As diagrams

(3A+3B) involve a bare pole, the contribution of coupled channels in diagrams (4A+4B) is

defintely important, since it gives rise to the various branching ratios and energy dependences

in the decay modes of the various resonances. In this work, we ignore NNLO corrections and

deal with a minimal Multi-Meson-Model (mMMM), based on diagrams (1A+1B), (2A+2B),

and (3A+3B+4A+4B).
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+

FIG. 2: Dynamical structure of the blue blob in fig.1; the wavy line is the W+, dashed lines are

mesons, continuous lines are resonances and the red blob is the meson-meson scattering amplitude,

described in fig.3; all diagrams within square brackets should be symmetrized, by making 2 ↔ 3.

The decay amplitude for the process D+ → K−K+ K+, given by eq.(3), has the general

structure

T = TNR +
[
T (1,1) + T (1,0) + T (0,1) + T (0,0) + (2 ↔ 3)

]
, (5)

5

full FSI!
and

S(0,1) =
[
1−M (0,1)

]−1

=
1

(1−M11) (1−M22)−M12 M21

[
(1−M22) M12

M21 (1−M11)

]
(402)

Calling Γ̄(0,1) = S(0,1) G(0,1)
(0) , one has

Γ̄(0,1)
π8 =

(m2
12 −m2

a0)

Da0(m
2
12)

[
(1−M22)Γ

(0,1)
(0)π8 +M12 Γ

(0,1)
(0)KK

]
(403)

Γ̄(0,1)
KK =

(m2
12 −m2

a0)

Da0(m
2
12)

[
M21 Γ

(0,1)
(0)π8 + (1−M11)Γ

(0,1)
(0)KK

]
(404)

Da0 = (m2
12 −m2

a0) [(1−M11) (1−M22)−M12 M21] (405)

The full amplitude is then given by[T−32|12/6]

〈U3(K
+
3 )|T (0,1) |D 〉 =

{
Γ̄(0,1)
π8 〈Uπ8

3 |+ Γ̄(0,1)
KK 〈UKK

3 |
}

(406)

Using eq.(114), one has

〈K−
1 K

+
2 (K

+
3 )|T (0,1) |D 〉 = − 1

2
Γ̄(0,1)
KK (407)

In order to avoid double counting, one subtracts both the contribution already included in the

non-resonant term and and the crossed channel resonant tree term. One then finds[T−32|12/11]

〈K−
1 K

+
2 (K

+
3 )|T (0,1) |D 〉 = − 1

2

[
Γ̄(0,1)
KK − Γ(0,1)

c|KK − P (0,1)
(Γ|KK)

]
(408)
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D. production amplitude J = 0, I = 1

The tree level amplitude is given by eqs.(??). The one-loop contribution is obtained with

the help of the result[T−32|12/11]

∫
d4!

(2π)4
1

[p2c−M2
x ] [p

2
d−M2

y ]
= −i Ω̄S

xy (390)

and reads[T−32|12/4]

〈U3 (K
+) |T (0,1)

(1) |D 〉 =
{
Γ(0,1)
(1)π8 〈U

π8
3 |+ Γ(0,1)

(1)KK 〈UKK
3 |

}
(391)

Γ(0,1)
(1)π8 = −K(0,1)

π8|π8
[
Ω̄S

π8

]
Γ(0,1)
(0)π8 −K(0,1)

π8|KK

[
1

2
Ω̄S

KK

]
Γ(0,1)
(0)KK (392)

Γ(0,1)
(1)KK = −K(0,1)

π8|KK

[
Ω̄S

π8

]
Γ(0,1)
(0)π8 −K(0,1)

KK|KK

[
1

2
Ω̄S

KK

]
Γ(0,1)
(0)KK (393)

These results can be expressed in a matrix form, as[T−32|12/11]

Γ(0,1)
(1) =

[
Γ(0,1)
(1)π8

Γ(0,1)
(1)KK

]
=

[
M11 M12

M21 M22

] [
Γ(0,1)
(0)π8

Γ(0,1)
(0)KK

]
= M (0,1) Γ(0,1)

(0) (394)

with

M11 = −K(0,1)
π8|π8

[
Ω̄S

π8

]
(395)

M12 = −K(0,1)
π8|KK

[
(1/2) Ω̄S

KK

]
(396)

M21 = −K(0,1)
π8|KK

[
Ω̄S

π8

]
(397)

M22 = −K(0,1)
KK|KK

[
(1/2) Ω̄S

KK

]
(398)

Eq.(394) can be generalized to

Γ(0,1)
(n+1) = M (0,1) Γ(0,1)

(n) =
[
M (0,1)

]n+1
Γ(0,1)
(0) (399)

and the full expansion in the number of loops is given by

S(0,1) Γ(0,1)
(0) = Γ(0,1)

(0) +
[
M (0,1)

]1
Γ(0,1)
(0) +

[
M (0,1)

]2
Γ(0,1)
(0) + · · ·

=
[
1 +M (0,1) S(0,1)

]
Γ(0,1)
(0) (400)

This yields

S(0,1) =
[
1 +M (0,1) S(0,1)

]
→

[
1−M (0,1)

]
S(0,1) = 1 (401)
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and

S(0,1) =
[
1−M (0,1)

]−1

=
1

(1−M11) (1−M22)−M12 M21

[
(1−M22) M12

M21 (1−M11)

]
(402)

Calling Γ̄(0,1) = S(0,1) G(0,1)
(0) , one has

Γ̄(0,1)
π8 =

(m2
12 −m2
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Da0(m
2
12)
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(1−M22)Γ

(0,1)
(0)π8 +M12 Γ

(0,1)
(0)KK

]
(403)

Γ̄(0,1)
KK =

(m2
12 −m2

a0)

Da0(m
2
12)

[
M21 Γ
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(0)π8 + (1−M11)Γ

(0,1)
(0)KK

]
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12 −m2
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The full amplitude is then given by[T−32|12/6]
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+
2 (K

+
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KK (407)

In order to avoid double counting, one subtracts both the contribution already included in the

non-resonant term and and the crossed channel resonant tree term. One then finds[T−32|12/11]

〈K−
1 K

+
2 (K

+
3 )|T (0,1) |D 〉 = − 1

2
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Γ̄(0,1)
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]
(408)

61

a0 example

⌘⇡, KK[J, I = 0, 1]

only one channel in the scattering amplitude

parameter: cd, cm ma0

access two-body dynamics !
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ππ parametrisation

scattering	data 	S-Wave

elasticity

one minus the probability of losing signal (1=>elastic)

Pelaez, Rodas, Elvira Eur.Phys.J.C 79 (2019) 12, 1008⇡⇡
<latexit sha1_base64="VzfBjSaFSVLOVlav6avFlg+kNY8=">AAAB8HicbVDLSgMxFL1TX7W+qi7dBIvgqsxUQZdFNy4r2Ie0Q8mkmTY0yQxJRihDv8KNC0Xc+jnu/Bsz01lo6yGBwzn3cu89QcyZNq777ZTW1jc2t8rblZ3dvf2D6uFRR0eJIrRNIh6pXoA15UzStmGG016sKBYBp91gepv53SeqNIvkg5nF1Bd4LFnICDZWekwHMbNvXhlWa27dzYFWiVeQGhRoDatfg1FEEkGlIRxr3ffc2PgpVoYRTueVQaJpjMkUj2nfUokF1X6aLzxHZ1YZoTBS9kuDcvV3R4qF1jMR2EqBzUQve5n4n9dPTHjtp0zGiaGSLAaFCUcmQtn1aMQUJYbPLMFEMbsrIhOsMDE2oywEb/nkVdJp1L2LeuP+sta8KeIowwmcwjl4cAVNuIMWtIGAgGd4hTdHOS/Ou/OxKC05Rc8x/IHz+QOYIZBE</latexit>

Inelasticity:

sets of phase shifts for the S0 wave, leaving only a few
solutions which are consistent with dispersion relations
(and, as it turns out, very similar one to the other, as
discussed in Sec. IV).

When dealing with different data sets one has to weigh
not only the data on a single experiment but one has to take
into account the reliability of the experiments themselves.
So we have done for many waves, where some clearly
faulty experimental data have only been considered to
conservatively enlarge the uncertainties. Concerning the
most controversial S0 wave, we have used the very reliable
data coming from Kl4 and K ! !! decays; to this we add
the results from other experimental analyses of !! scat-
tering available in the literature, either separately or com-
bined in a global fit. We then use forward dispersion
relations to test consistency of the several sets of data.

The present study should therefore be considered, in
particular, as a guideline to the consistency (especially
with forward dispersion relations) of the various data sets.

Next, we use these dispersion relations to improve the
central values of the parameters of the fits given in Sec. II.
The result of such analysis (Sec. IV) is that one can get a
precise description for all waves, consistent with forward
dispersion relations up to s1=2 ! 0:95 GeV and a bit less so
( & 1:5" level) in the whole energy range, 2M! " s1=2 "
1:42 GeV, and even below threshold, down to s1=2 #
!!!

2
p
M!. The greater uncertainties affect the S0 wave for

s1=2 > 0:95 GeV, a not unexpected feature, and, to a lesser
extent, the P wave above 1:15 GeV.

In Sec. V we verify that the scattering amplitudes we
have obtained, which were shown to satisfy s$ u crossing
(by checking the dispersion relations), also verify s$ t
crossing, in that they satisfy two typical crossing sum rules.
In Sec. VI we use the scattering amplitudes we have
determined and the method of the Froissart-Gribov repre-
sentation to calculate a number of low energy parameters
for P, D and some higher waves which, in particular,
provides further consistency tests. We also evaluate, in
Sec. VII, the important quantities %a&0'0 $ a&2'0 (2 and
#&0'
0 &m2

K' $ #&2'
0 &m2

K' for which we find

%a&0'0 $ a&2'0 (2 # &0:077) 0:008'M$2
! ;

#&0'
0 &m2

K' $ #&2'0 &m2
K' # 52:9) 1:6o:

Also in Sec. VII we compare our results with those ob-
tained by other authors using Roy equations and ch.p.t.
However, in the present paper we will not address our-
selves to the question of the chiral perturbation theory
analysis of our !! amplitudes.

Our paper is finished in Sec. VIII with a brief summary,
as well as with a few appendixes. In Appendix A, we
collect the formulas obtained with our best fits. In
Appendix B we give a brief discussion of the Regge for-
mulas used; in particular, we present an improved evalu-
ation of the parameters for rho exchange. Appendix C is

devoted to a discussion of the shortcomings of experimen-
tal phase shift analyses above !1:4 GeV, which justifies
our preference for using Regge formulas in this energy
region.

We end this introduction with a few words on notation
and normalization conventions. We will here denote am-
plitudes with a fixed value of isospin, say I, in channel s,
simply byF&I', f&I'l ; we will specify the channel, F&Is', when
there is danger of confusion. For amplitudes with fixed
isospin in channel t, we write explicitly F&It'.

For scattering amplitudes with well-defined isospin in
channel s, Is, we write

F&Is'&s; t' # 2*
X

l#even

&2l+ 1'Pl&cos$'f&Is'l &s'; Is # even;

F&Is'&s; t' # 2*
X

l#odd

&2l+ 1'Pl&cos$'f&Is'l &s'; Is# odd;

f&I'l &s' # 2s1=2

!k
f̂&I'l ; f̂&I'l # sin#&I'l &s'ei#&I'l &s': (1.1a)

The last formula is only valid when only the elastic channel
is open. When inelastic channels open this equation is no
more valid, but one can still write

f̂ l&s' #
"
%le2i#l $ 1

2i

#

: (1.1b)

The factor 2 in the first formulas in (1.1a) is due to Bose
statistics. Because of this, even waves only exist with
isospin I # 0; 2 and odd waves must necessarily have
isospin I # 1. For this reason, we will often omit the
isospin index for odd waves, writing e.g. f1, f3 instead
of f&1'1 , f&1'3 . Another convenient simplification that we use
here is to denote the!! partial waves by S0, S2, P, D0, D2,
F, etc., in self-explanatory notation.

The quantity %l, called the inelasticity parameter for
wave l, is positive and smaller than or equal to unity. The
elastic and inelastic cross sections, for a given wave, are
given in terms of #l and %l by

"el
l # 1

2

$
1+ %2

l

2
$ % cos2#l

%

; "inel
l # 1$ %2

l

4
;

(1.2)

"el
l ;"

inel
l are defined so that, for collision of particles A, B

(assumed distinguishable),

"tot #
4!2

&1=2&s;mA;mB'
2s1=2

!k

X

l

&2l+ 1'%"el
l + "inel

l (:

(1.3)

When neglecting isospin violations (which we do
unless explicitly stated otherwise) we will take the con-
vention of approximating the pion mass by M! # m!) ’
139:57 MeV. We also define scattering lengths, a&I'l , and
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bined in a global fit. We then use forward dispersion
relations to test consistency of the several sets of data.

The present study should therefore be considered, in
particular, as a guideline to the consistency (especially
with forward dispersion relations) of the various data sets.

Next, we use these dispersion relations to improve the
central values of the parameters of the fits given in Sec. II.
The result of such analysis (Sec. IV) is that one can get a
precise description for all waves, consistent with forward
dispersion relations up to s1=2 ! 0:95 GeV and a bit less so
( & 1:5" level) in the whole energy range, 2M! " s1=2 "
1:42 GeV, and even below threshold, down to s1=2 #
!!!

2
p
M!. The greater uncertainties affect the S0 wave for

s1=2 > 0:95 GeV, a not unexpected feature, and, to a lesser
extent, the P wave above 1:15 GeV.

In Sec. V we verify that the scattering amplitudes we
have obtained, which were shown to satisfy s$ u crossing
(by checking the dispersion relations), also verify s$ t
crossing, in that they satisfy two typical crossing sum rules.
In Sec. VI we use the scattering amplitudes we have
determined and the method of the Froissart-Gribov repre-
sentation to calculate a number of low energy parameters
for P, D and some higher waves which, in particular,
provides further consistency tests. We also evaluate, in
Sec. VII, the important quantities %a&0'0 $ a&2'0 (2 and
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K' for which we find

%a&0'0 $ a&2'0 (2 # &0:077) 0:008'M$2
! ;
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0 &m2

K' $ #&2'0 &m2
K' # 52:9) 1:6o:

Also in Sec. VII we compare our results with those ob-
tained by other authors using Roy equations and ch.p.t.
However, in the present paper we will not address our-
selves to the question of the chiral perturbation theory
analysis of our !! amplitudes.

Our paper is finished in Sec. VIII with a brief summary,
as well as with a few appendixes. In Appendix A, we
collect the formulas obtained with our best fits. In
Appendix B we give a brief discussion of the Regge for-
mulas used; in particular, we present an improved evalu-
ation of the parameters for rho exchange. Appendix C is

devoted to a discussion of the shortcomings of experimen-
tal phase shift analyses above !1:4 GeV, which justifies
our preference for using Regge formulas in this energy
region.

We end this introduction with a few words on notation
and normalization conventions. We will here denote am-
plitudes with a fixed value of isospin, say I, in channel s,
simply byF&I', f&I'l ; we will specify the channel, F&Is', when
there is danger of confusion. For amplitudes with fixed
isospin in channel t, we write explicitly F&It'.

For scattering amplitudes with well-defined isospin in
channel s, Is, we write

F&Is'&s; t' # 2*
X

l#even

&2l+ 1'Pl&cos$'f&Is'l &s'; Is # even;

F&Is'&s; t' # 2*
X

l#odd

&2l+ 1'Pl&cos$'f&Is'l &s'; Is# odd;

f&I'l &s' # 2s1=2

!k
f̂&I'l ; f̂&I'l # sin#&I'l &s'ei#&I'l &s': (1.1a)

The last formula is only valid when only the elastic channel
is open. When inelastic channels open this equation is no
more valid, but one can still write

f̂ l&s' #
"
%le2i#l $ 1

2i

#

: (1.1b)

The factor 2 in the first formulas in (1.1a) is due to Bose
statistics. Because of this, even waves only exist with
isospin I # 0; 2 and odd waves must necessarily have
isospin I # 1. For this reason, we will often omit the
isospin index for odd waves, writing e.g. f1, f3 instead
of f&1'1 , f&1'3 . Another convenient simplification that we use
here is to denote the!! partial waves by S0, S2, P, D0, D2,
F, etc., in self-explanatory notation.

The quantity %l, called the inelasticity parameter for
wave l, is positive and smaller than or equal to unity. The
elastic and inelastic cross sections, for a given wave, are
given in terms of #l and %l by
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l # 1

2

$
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When neglecting isospin violations (which we do
unless explicitly stated otherwise) we will take the con-
vention of approximating the pion mass by M! # m!) ’
139:57 MeV. We also define scattering lengths, a&I'l , and
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FIG. 1. Comparison of solutions I, II and III (Tables I,
II, III) versus data. The gray, blue and green bands corre-
spond to the uncertainty of solutions I, II and III, respectively.
Above 1.4 GeV, solution I fits the data of [5, 64] (solid circles)
and [2, 3] (solid squares), solution II fits [4] (solid diamonds)
and solution III fits the updated (- + -) data from [58] (hol-
low diamonds). The data coming from [9] (empty squares)
and [65] (empty circles) for the phase shift and [66] (solid tri-
angle up), [67](solid triangle down), [6] (empty squares), [65]
(empty circles), [68] (empty triangle up) and [69] (empty tri-
angle down) for the elasticity are just shown for comparison.
The red-dashed vertical line separates the region where the
fits describe both data and dispersion relation results, from
the region above, where the parameterization is just fitted to
data. The blue-dotted vertical line stands at the energy of
the last data point of solutions II and III.

nance.

Concerning the compatibility with the dispersive re-
sults in [28], we show in Fig. 2 the comparison between
the CFD analysis of [28] and our solution I. Up to 1.4
GeV it is enough to refer to solution I as the global so-
lution, because it is the simplest and all them are al-
most indistinguishable below 1.4 GeV. The relevant ob-
servation from Fig. 2 is that the piecewise CFD and our
new parameterization look almost the same below the
KK̄ threshold and are also very similar and compatible
above it. The sharp structure in the region between the
two vertical lines in Fig. 2 is dominated by the f0(980)

TABLE I. Fit parameters of the global parameterization for
the S0-wave solution I. sp is the f0(980) pole position from
the dispersive analysis in [36].

t00,conf t0f0
√
s > 1.4GeV

B0 12.2±0.3 K0 5.25±0.28 d0 -5.4±3.7
B1 -0.9±1.1 K1 -4.40±0.16 d1 ≡ 0
B2 15.9±2.7 K2 0.175±0.155 d2 ≡ 0
B3 -5.7±3.1 K3 -0.28±0.06 ε2 10.3±4.0
B4 -22.5±3.7 ε3 ≡ 0
B5 6.9±4.8 Re

√
sp 0.996±7 GeV ε4 ≡ 0

z0 0.137±0.028 GeV Im
√
sp -0.025±8 GeV

TABLE II. Fit parameters of the global parameterization for
the S0-wave solution II. sp is the f0(980) pole position from
the dispersive analysis in [36].

t00,conf t0f0
√
s > 1.4GeV

B0 12.2±0.3 K0 4.97±0.08 d0 -16.5±6.2
B1 -1.2±0.8 K1 -4.72±0.08 d1 ≡ 0
B2 15.5±1.5 K2 -0.04±0.18 d2 ≡ 0
B3 -6.0±1.5 K3 -0.31±0.04 ε2 160.8±2.4
B4 -21.4±1.3 ε3 -715.5±8.5
B5 6.3±4.5 Re

√
sp 0.996±7 GeV ε4 -937.3±25.0

z0 0.135±0.031 GeV Im
√
sp -0.025±8 GeV

TABLE III. Fit parameters of the global parameterization
for the S0-wave solution III. sp is the f0(980) pole position
from the dispersive analysis in [36].

t00,conf t0f0
√
s > 1.4GeV

B0 12.3±0.3 K0 5.26±0.08 d0 73.4±1.5
B1 -1.0±0.9 K1 -4.64±0.04 d1 27.3±0.4
B2 15.7±1.7 K2 0.10±0.07 d2 -0.3±0.2
B3 -6.0±1.6 K3 -0.29±0.04 ε2 171.6±2.0
B4 -22.1±1.2 ε3 -1038.8±8.3
B5 7.1±2.8 Re

√
sp 0.996±7 GeV ε4 1704.7±30.8

z0 0.136±0.035 GeV Im
√
sp -0.025±8 GeV

contribution that we have factored out explicitly in our
global parameterization.
All in all, this new parameterization is consistent with

the GKPY dispersive data analysis, its output in the
complex plane, as well as with the threshold parame-
ters, the Adler zero, the positions of both σ/f0(500) and
f0(980) poles, and the inelastic region up to 1.43 GeV,
which was consistent with Forward Dispersion Relations.
This consistency is illustrated in Table IV where we show
the χ2/d.o.f. ≡ χ̂2 of our fit with the new parameteriza-
tion in different regions: χ̂2

1 from ππ to KK̄ threshold,
χ̂2
2 from KK̄ threshold to 1.4 GeV, χ̂2

C
in the complex

plane within the applicability region, χ̂2
δ for the phase

above 1.4 GeV and χ̂2
η for the elasticity above 1.4 GeV.

All of them are smaller or equal to one for any of our
three solutions.
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FIG. 1. Comparison of solutions I, II and III (Tables I,
II, III) versus data. The gray, blue and green bands corre-
spond to the uncertainty of solutions I, II and III, respectively.
Above 1.4 GeV, solution I fits the data of [5, 64] (solid circles)
and [2, 3] (solid squares), solution II fits [4] (solid diamonds)
and solution III fits the updated (- + -) data from [58] (hol-
low diamonds). The data coming from [9] (empty squares)
and [65] (empty circles) for the phase shift and [66] (solid tri-
angle up), [67](solid triangle down), [6] (empty squares), [65]
(empty circles), [68] (empty triangle up) and [69] (empty tri-
angle down) for the elasticity are just shown for comparison.
The red-dashed vertical line separates the region where the
fits describe both data and dispersion relation results, from
the region above, where the parameterization is just fitted to
data. The blue-dotted vertical line stands at the energy of
the last data point of solutions II and III.

nance.

Concerning the compatibility with the dispersive re-
sults in [28], we show in Fig. 2 the comparison between
the CFD analysis of [28] and our solution I. Up to 1.4
GeV it is enough to refer to solution I as the global so-
lution, because it is the simplest and all them are al-
most indistinguishable below 1.4 GeV. The relevant ob-
servation from Fig. 2 is that the piecewise CFD and our
new parameterization look almost the same below the
KK̄ threshold and are also very similar and compatible
above it. The sharp structure in the region between the
two vertical lines in Fig. 2 is dominated by the f0(980)

TABLE I. Fit parameters of the global parameterization for
the S0-wave solution I. sp is the f0(980) pole position from
the dispersive analysis in [36].

t00,conf t0f0
√
s > 1.4GeV

B0 12.2±0.3 K0 5.25±0.28 d0 -5.4±3.7
B1 -0.9±1.1 K1 -4.40±0.16 d1 ≡ 0
B2 15.9±2.7 K2 0.175±0.155 d2 ≡ 0
B3 -5.7±3.1 K3 -0.28±0.06 ε2 10.3±4.0
B4 -22.5±3.7 ε3 ≡ 0
B5 6.9±4.8 Re

√
sp 0.996±7 GeV ε4 ≡ 0

z0 0.137±0.028 GeV Im
√
sp -0.025±8 GeV

TABLE II. Fit parameters of the global parameterization for
the S0-wave solution II. sp is the f0(980) pole position from
the dispersive analysis in [36].

t00,conf t0f0
√
s > 1.4GeV

B0 12.2±0.3 K0 4.97±0.08 d0 -16.5±6.2
B1 -1.2±0.8 K1 -4.72±0.08 d1 ≡ 0
B2 15.5±1.5 K2 -0.04±0.18 d2 ≡ 0
B3 -6.0±1.5 K3 -0.31±0.04 ε2 160.8±2.4
B4 -21.4±1.3 ε3 -715.5±8.5
B5 6.3±4.5 Re

√
sp 0.996±7 GeV ε4 -937.3±25.0

z0 0.135±0.031 GeV Im
√
sp -0.025±8 GeV

TABLE III. Fit parameters of the global parameterization
for the S0-wave solution III. sp is the f0(980) pole position
from the dispersive analysis in [36].

t00,conf t0f0
√
s > 1.4GeV

B0 12.3±0.3 K0 5.26±0.08 d0 73.4±1.5
B1 -1.0±0.9 K1 -4.64±0.04 d1 27.3±0.4
B2 15.7±1.7 K2 0.10±0.07 d2 -0.3±0.2
B3 -6.0±1.6 K3 -0.29±0.04 ε2 171.6±2.0
B4 -22.1±1.2 ε3 -1038.8±8.3
B5 7.1±2.8 Re

√
sp 0.996±7 GeV ε4 1704.7±30.8

z0 0.136±0.035 GeV Im
√
sp -0.025±8 GeV

contribution that we have factored out explicitly in our
global parameterization.
All in all, this new parameterization is consistent with

the GKPY dispersive data analysis, its output in the
complex plane, as well as with the threshold parame-
ters, the Adler zero, the positions of both σ/f0(500) and
f0(980) poles, and the inelastic region up to 1.43 GeV,
which was consistent with Forward Dispersion Relations.
This consistency is illustrated in Table IV where we show
the χ2/d.o.f. ≡ χ̂2 of our fit with the new parameteriza-
tion in different regions: χ̂2

1 from ππ to KK̄ threshold,
χ̂2
2 from KK̄ threshold to 1.4 GeV, χ̂2

C
in the complex

plane within the applicability region, χ̂2
δ for the phase

above 1.4 GeV and χ̂2
η for the elasticity above 1.4 GeV.

All of them are smaller or equal to one for any of our
three solutions.
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ππ amplitude features 

beyond 1 resonance (BW description)

B. K-matrix results

As already stressed, the imaginary component ΩI of the two-meson propagators Ω is fully

determined by theory. In the widely used K-matrix approach, just this part is kept and

the choice ΩR = 0 amounts, in fact, to a disguised model for the real part. In the case of

uncoupled channels, this choice has the advantage of allowing a clear identification of the

nominal value of the resonance mass. In this subsection, we present numerical studies for the

scalar-isoscalar amplitude A(0,0)
(ππ|ππ) given by Eq. (11) and rely on expressions for the kernel

given in App.B, with resonance masses mfa = 1.37GeV, mfb = 0.98GeV, and coupling

parameters fixed in Ref. [28]. Once the value of ΩR is fixed, predictions depend just on

models used for the interaction kernel.
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FIG. 7: Predictions for real (full curves) and imaginary (dashed curves) parts of the scalar-isoscalar

ππ amplitude based on a single resonance (R) and the same resonance superimposed to a chiral

contact term (C+R).

In Fig. 7, we neglect KK̄ and ηη couplings and compare results from two versions of

Eq. (B31), both with ε = 0. One of them keeps just its third term, representing an octet

resonance(R), and the other also includes the first term, describing a contact chiral interac-

tion(C+R), which is one of the signatures of post QCD physics. In the jargon of the isobar

model, the resonant structure corresponds to a BW line shape, as discussed in Sect.IV. One

notes that the contact term is rather important and the dominance of the resonance is re-

stricted to a narrow band around its mass mfb. Close to threshold, the chiral contribution
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Coupled-channel ππ → KK

cusp in the real parte for  and a discontinuity in imaginary part for  mf0 < 2MK mf0 > 2MK

yields Eq. (15) and give the correct magnitude for the scattering length.
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FIG. 8: Predictions for real (full curves) and imaginary (dashed curves) parts of the scalar-isoscalar

ππ amplitude based on a single resonance superimposed to a non-resonant background (NR+R)

for no coupled channels (black) and a coupled KK̄ channel with threshold below (blue) and above

(red) the resonance mass.

The opening of the KK̄ channel is studied in Fig. 8, for the same C+R case considered

before, keeping the resonance mass fixed at mfb = 0.98GeV, while adopting two fake values

for MK , namely 0.48 and 0.50GeV, so as to have the KK̄ threshold both below and and

above it. As expected, all curves coincide below the thresholds. Above them, however, one

learns that the impact of the coupling is important, since the previous C+R form provides

a very poor representation for the new results, irrespective of the value of MK chosen. At

threshold, one has a usual cusp in the real part of the amplitude for mfb < 2MK and

a discontinuity in its imaginary part for mfb > 2MK . Beyond that point, the real curves

display the upward bending associated with the polynomial chiral background whereas usual

connections between real and imaginary parts are lost, owing to inelastic effects. Altogether,

the shift in MK affects the amplitudes just in a narrow region of about 200MeV above

threshold.

In the scalar-isoscalar sector, SU(3) gives rise to octet and singlet states So and S1,

which can be combinations of the observed resonances fa = f(1370) and fb = f(980), with
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all curves coincide below the thresholds
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Unitarization with N resonances
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FIG. 10: Predictions for real and imaginary parts of the scalar-isoscalar ππ amplitude based on two

resonances superimposed to a non-resonant background (NR+fa+fb) with a coupled KK̄ channel,

for mixing parameter ε = 0 (full lines), ε = π/4 (dotted lines) and ε = π (dashed lines).

The intermediate two-meson propagators for states a and b are given in App.A, Eqs. (A11)

and (A12), and their complex forms for J = 0, 1 read

ΩS
ab = −

Πab(s)

16π2
, (54)

ΩP
ab = −

λ

48 π2 s
Πab(s) . (55)

where λ is the Källén function whereas Πab represents the regular parts of loop integrals, that

are determined by theory and shown in Eqs. (A4)-(A9). Owing to renormalization, the real

parts of the functions Ω must be supplemented by arbitrary constants, to be fixed by experi-

ment and that is why a model dependence comes in. In the framework of chiral perturbation

theory, these constants are coefficients of polynomials on external momenta [17].

The model introduced here consists in a generalization scheme for Eqs. (54) and (55)

and its explicit form depends on the number of resonances considered, which are denoted

by Rx, Ry, Rz · · ·. Their masses and coupling constants are taken as free parameters, so that

they can be fitted in phenomenological analyses.

In order to motivate the choices made, we consider the case J = 0 and begin with the

case of a single resonance, which is written as

ΩS
ab(s) →

1

16π2

{[

Fx(s)Π
R
ab(m

2
x)
]

−Πab(s)
}

, (56)

where the term within square brackets is real and corresponds to a subtraction. It generalizes

an expression employed earlier in the study of the Kπ amplitude [7]. The function Fx(s) is

24

a form factor that satisfies the conditions:

(a) Fx(s) → 0 for s → 0 - this is important to ensure that loop corrections do not spoil chiral

symmetry results at low energies. In that region, the symmetry predicts amplitudes to be

proportional to the real contact terms present in the kernels given in App.B and therefore

the functions Ω cannot show up there.

(b) Fx(s) = 1 for s = m2
x - this condition implies that the real component satisfies ΩSR

ab (m
2
x) =

0 and was chosen with practical purposes in mind, so that results coincide with those of the

K-matrix approach at s = m2
x. In the case of uncoupled channels, this allows the nominal

mass of the resonance to be identified with a zero of the real part of the scattering amplitude.

In the case of coupled channels, this property is preserved in the elastic regime below the

first threshold but changes afterwards, as shown in Fig. 9. The subtraction performed at the

resonance mass is a conservative one, intended to prevent the increase of free parameters in

the model.

(c) Fx(s) is finite for s → ∞ - chiral symmetry holds at low energies only, where it requires

subtraction terms as polynomials in s. However, these may become too important at high

energies, where the theory is no longer valid, and this unwanted behavior is avoided by

imposing the form factor to be bound in that limit.

The class of functions satisfying these criteria is, of course, very large and our choice is

Fx(s) =
4m2

x s

(s+m2
x)

2
, (57)

which has a maximum at s = m2
x. In Fig. 11 we show, on the left, the energy dependence of

the two-meson propagators for ππ, Kπ, πη, KK̄, Kη and ηη states given by Eq. (54), where

it is possible to see the different scales associated with SU(2) and SU(3) sectors. On the

right, we present model predictions based on Eq. (56) for the isospin 0 channel, based on a

single fb resonance of mass mfb = 0.98GeV. We notice that the subtraction makes the real

parts of ΩS to vanish at the resonance mass and that the effects of the form factor Fx(s) are

more important at low energies, the very region where the functions Ω are less important

owing to chiral symmetry. These combined features suggest that the overall influence of the

specific choice made in Eq. (57) is expected to be small.

The extensions of Eq. (56) to the case of two and three resonances read

ΩS
ab(s) →

1

16π2

{

Fx(s)
(s−m2

y)

(m2
x −m2

y)
ΠR

ab(m
2
x) + Fy(s)

(m2
x − s)

(m2
x −m2

y)
ΠR

ab(m
2
y)− Πab(s)

}

, (58)
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respect Chiral Symmetry is 
finite at s → ∞
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FIG. 11: Behaviour of the real (continuous lines) and imaginary (dashed lines) parts of two-meson

propagators: (left) functions ΩS
ππ, Ω

S
Kπ, Ω

S
π8, Ω

S
KK , ΩS

K8 and ΩS
88 from Eq. (54); (right) model

predictions for the isospin 0 channel, based on a single fb resonance of mass mfb = 0.98GeV, from

Eq. (56).

ΩS
ab(s) →

1

16π2

{

Fx(s)
(s−m2

y) (s−m2
z)

(m2
x −m2

y) (m
2
x −m2

z)
ΠR

ab(m
2
x) + Fy(s)

(m2
x − s) (s−m2

z)

(m2
x −m2

y) (m
2
y −m2

z)
ΠR

ab(m
2
y)

+Fz(s)
(m2

x − s) (m2
y − s)

(m2
x −m2

z) (m
2
y −m2

z)
ΠR

ab(m
2
z)− Πab(s)

}

. (59)

The corresponding expressions for the J = 1 case ΩP
ab can be obtained from Eqs. (56), (58)

and (59) through multiplication by a factor λ/3 s.

We compare predictions from the model and the K-matrix for the scalar-isoscalar ππ

amplitude in Fig. 12, for the case of two resonances fa = f(1370) and fb = f(980) with the

mixing parameter ε = 0. The corresponding phase shift and inelasticity parameter are shown

in Fig. 13. It is possible to notice that results from the model and K-matrix are qualitatively

similar over the energy range considered, except for a small region around 1 GeV, where

effects from the resonance fb and the opening of the KK̄ channel compete. This can be

seen more clearly in the sharp peak in figure for the phase, whose tip occurs at threshold.

For slightly lower energies, the resonance tends to push the phase upwards, whereas the

coupled KK̄ interaction does the opposite afterwards. In order to explore this picture, we

use a little lower mass for the octet resonance, namely fb = 0.96GeV and the results of

Figs. 14 and 15 show that effects near threshold become much stronger. The phase for the

model, in particular, has a sharp rise around 1 GeV, as shown in fig.15 and also observed

by experimet [16], but this does not happen for the K-matrix. Another interesting feature
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FIG. 6: (a) Tree-level two-body interaction kernel K(J,I)
ab→cd - a NLO s-channel resonance, added to

a LO contact term. (b) Structure of the unitarized scattering amplitude.

The basic meson-meson intermediate interactions P aP b → P cP d are described by kernels

K(J,I)
ab|cd and their simple dynamical structure is shown in Fig.6, as LO four point terms, typical

of chiral symmetry, supplemented by NLO resonance exchanges in the s-channel. Just in

the (J = 0, I = 0) channel two resonances, S1 and So, are needed. In these diagrams, all

vertices represent interactions derived from chiral lagrangians[46]. Kernels are then functions

depending on just masses and coupling constants. The mathematical structure of these

functions is displayed in App.F. In the case of the φ-meson, the kernel includes an effective

coupling to the (ρπ+πππ) channel, which accounts for about 15% of its width. This effective

interaction is discussed in App.(C) and yields eq.(F6).

All other resonance terms in the kernels contain bare poles. However, the evaluation of

amplitudes involves the iteration of the basic kernels by means of two-meson propagators,

as in Fig.6(b). The propagators, denoted by Ω̄, are discussed in App.B and, in principle,

they have both real and imaginary components. The former contain divergent contributions

and their regularization brings unknown parameters into the problem. This considerable

nuisance is avoided by working in the K-matrix approximation, whereby just the imaginary

parts of the two-meson propagators are kept. This gives rise to the structure sketched within

the square bracket of eq.(2), where the terms (loop×K) are realized by the functions M (J,I)
ij

given in eqs.(G10-G13). The ressummation of the geometric series, indicated in Fig.6(b),

endows the s-channel resonances with widths. Thus among other structures, intermediate

two-body amplitudes yield denominators D(J,I), which are akin to those of the form DBW =

[s − m2 + imΓ] employed in BW functions. These denominators, that correspond to the

predictions of the model for the resonance line shapes, are given in App.G and reproduced
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Eq. (56).
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16π2
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(s−m2

y) (s−m2
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(m2
x −m2

y) (m
2
x −m2

z)
ΠR

ab(m
2
x) + Fy(s)

(m2
x − s) (s−m2

z)

(m2
x −m2

y) (m
2
y −m2

z)
ΠR

ab(m
2
y)

+Fz(s)
(m2

x − s) (m2
y − s)

(m2
x −m2

z) (m
2
y −m2

z)
ΠR

ab(m
2
z)− Πab(s)

}

. (59)

The corresponding expressions for the J = 1 case ΩP
ab can be obtained from Eqs. (56), (58)

and (59) through multiplication by a factor λ/3 s.

We compare predictions from the model and the K-matrix for the scalar-isoscalar ππ

amplitude in Fig. 12, for the case of two resonances fa = f(1370) and fb = f(980) with the

mixing parameter ε = 0. The corresponding phase shift and inelasticity parameter are shown

in Fig. 13. It is possible to notice that results from the model and K-matrix are qualitatively

similar over the energy range considered, except for a small region around 1 GeV, where

effects from the resonance fb and the opening of the KK̄ channel compete. This can be

seen more clearly in the sharp peak in figure for the phase, whose tip occurs at threshold.

For slightly lower energies, the resonance tends to push the phase upwards, whereas the

coupled KK̄ interaction does the opposite afterwards. In order to explore this picture, we

use a little lower mass for the octet resonance, namely fb = 0.96GeV and the results of

Figs. 14 and 15 show that effects near threshold become much stronger. The phase for the

model, in particular, has a sharp rise around 1 GeV, as shown in fig.15 and also observed

by experimet [16], but this does not happen for the K-matrix. Another interesting feature
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Eq. (56).
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{
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The corresponding expressions for the J = 1 case ΩP
ab can be obtained from Eqs. (56), (58)

and (59) through multiplication by a factor λ/3 s.

We compare predictions from the model and the K-matrix for the scalar-isoscalar ππ

amplitude in Fig. 12, for the case of two resonances fa = f(1370) and fb = f(980) with the

mixing parameter ε = 0. The corresponding phase shift and inelasticity parameter are shown

in Fig. 13. It is possible to notice that results from the model and K-matrix are qualitatively

similar over the energy range considered, except for a small region around 1 GeV, where

effects from the resonance fb and the opening of the KK̄ channel compete. This can be

seen more clearly in the sharp peak in figure for the phase, whose tip occurs at threshold.

For slightly lower energies, the resonance tends to push the phase upwards, whereas the

coupled KK̄ interaction does the opposite afterwards. In order to explore this picture, we

use a little lower mass for the octet resonance, namely fb = 0.96GeV and the results of

Figs. 14 and 15 show that effects near threshold become much stronger. The phase for the

model, in particular, has a sharp rise around 1 GeV, as shown in fig.15 and also observed

by experimet [16], but this does not happen for the K-matrix. Another interesting feature
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