

ISR studies at Belle II

Sen Jia (jiasen@fudan.edu.cn) Fudan University on behalf of the Belle II Collaboration

Initial state radiation (ISR)

ISR method was proposed in 1968 by Y. N. BAIER and V. S. FADIN.

 Volume 27B. number 4
 PHYSICS LETTERS
 8 July 1968

 ISR technique is a very effective tool to study exotic Y states (J^{PC} = 1⁻⁻⁻).

 RADIATIVE CORRECTIONS TO THE RESONANT PARTICLE PRODUCTION

 V.N. BAIER and V.S. FADIN

 Institute of Nuclear Physics. Novosibirsk. USSR

Received 1 May 1968

Radiative corrections to the resonant cross-sections of particle production in colliding beam experiments have been calculated.

Mechanism of the initial state radiation:

- Allows to study energies below E_{c.m.}
- Wide energy range available for the cross section measurements
- Suppression from additional photon emission compensated by high luminosity at B-factory

Initial state radiation

Charmonium(-like) states

• Below $D\overline{D}$ thresholds – charmonium is successful stories of QCD.

- But there are many exotic states observed in the past decade, and they are hard to fit in the two families.
- ISR technique helps to explore 1⁻⁻ Y states and sub-particle Z_c states.

Various interpretations of the exotic states

Non-standard hadrons

Besides above models, there still are screened potential, cusps effect, final state interaction ...

High Priority:

- Identify most prominent component in wave function
- Seek unique picture describing all XYZ states, not state-by-state

Nature Reviews Physics 1, 480 (2019)

Outline

- SuperKEKB and Belle II detectors
- Overview of ISR results at B-factories
- ISR prospects at Belle II
- ongoing ISR studies at Belle II
- Summary

SuperKEKB

Detector: Belle Vs. Belle II

Overview of ISR results at B-factories

Belle, BaBar: $e^+e^- \rightarrow open charm$

Charminoum states with $J^{PC} = 1^{--}$

- $\psi(4040)$ is evident in $\overline{D}D^*$, $D^*\overline{D}^*$, $D_s^+D_s^-$
- ψ (4160) is evident in $D^*\overline{D}^*$, $D_s^+D_s^-$

•
$$\psi$$
(4415) is evident in $D\overline{D}\pi$, $D_s^+D_s^-$

4.8

GeV/c²

-8-

Remarkable charmonium-like mesons via ISR:

Y(4660) also known as ψ (4660) via ISR:

ISR prospects at Belle II

- Comparable with BESIII in direct e⁺e⁻ annihilations (higher effective luminosity but smaller efficiencies at Belle II)
- Continuous mass range to investigate fine structures
- Higher mass region (> 5.0 GeV) is unique for Belle II

ISR prospects at Belle II

From PTEP 2019 (2019) 12, 123C01, Belle II physics book

Golden Channels	$E_{c.m.}$ (GeV)	Statistical error $(\%)$	Related XYZ states
$\pi^+\pi^- J/\psi$	4.23	7.5(3.0)	$Y(4008), Y(4260), Z_c(3900)$
$\pi^+\pi^-\psi(2S)$	4.36	12 (5.0)	Y(4260), Y(4360), Y(4660),
			$Z_c(4050)$
K^+K^-J/ψ	4.53	15 (6.5)	Z_{cs}
$\pi^+\pi^-h_c$	4.23	10 ab ⁻¹ ¹⁵ (6.5)	$Y(4220), Y(4390), Z_c(4020),$
		∽ 50 ab ⁻¹	$Z_c(4025)$
$\omega\chi_{c0}$	4.23	$35\ (15)$	Y(4220)

- Measure more precisely the line shapes of more final states in e⁺e⁻ annihilations, including open-charm and charmonium final states.
- Search for the Y states in more processes, such as Y → charmed baryon pairs ($\Lambda_c^+\Sigma_c^-, \Sigma_c^+\Sigma_c^-$), charmed strange meson pairs (D_sD_{s2}(2573), D_s*D_{s0}(2317)), ... Phys. Rept. 873 (2020)
- Search for Z_{cs} states decaying into $K^{\pm}J/\psi$, $D_s^-D^{*0}$ +c.c., $D_s^{*-}\overline{D}^0$ +c.c., ...
- Determine the quantum numbers, measure the Argand plot of the resonant amplitude, and search for more decay modes.

ISR studies at Belle II

•
$$e^+e^- \rightarrow J/\psi(\rightarrow \mu^+\mu^-)$$
 via ISR

- $e^+e^- \rightarrow \psi(2S) \rightarrow \pi^+\pi^-J/\psi$
- $e^+e^- \rightarrow \psi(2S) \rightarrow \pi^0 \pi^0 J/\psi$

• $e^+e^- \rightarrow \psi(2S) \rightarrow \eta J/\psi$

For ISR production of bottomonium, please see Bryan FULSOM's report on "Bottomonium results and prospects at Belle II" on Thursday, 29 July.

$e^+e^- \rightarrow J/\psi(\rightarrow \mu^+\mu^-)$ via ISR

Selection criteria:

- Point of closest approach to the interaction point in r – ϕ (along z direction) < 1.0 (3.0) cm
- For muons, $\frac{\mathcal{L}_{\mu}}{\mathcal{L}_{e} + \mathcal{L}_{\mu} + \mathcal{L}_{\pi} + \mathcal{L}_{K} + \mathcal{L}_{p} + \mathcal{L}_{d}} > 0.5$

efficiency corrections. Both are consistent.

Recoil mass square cut: $-2 < M_{recoil}^2 < 2 (GeV/c^2)^2$

The polar angles for muon tracks from signal MC simulations and data after trigger

PHOKHARA generator has been embeded into Belle2 software framework to simulate ISR events.

$e^+e^- \rightarrow \psi(2S) \rightarrow \pi^+\pi^- J/\psi$

Selection criteria:

- For muons, electrons, and pions, $\frac{\mathcal{L}_{\mu}}{\mathcal{L}_{e}+\mathcal{L}_{\mu}+\mathcal{L}_{\pi}+\mathcal{L}_{K}+\mathcal{L}_{p}+\mathcal{L}_{d}} > 0.5, \frac{\mathcal{L}_{e}}{\mathcal{L}_{e}+\mathcal{L}_{\mu}+\mathcal{L}_{\pi}+\mathcal{L}_{K}+\mathcal{L}_{p}+\mathcal{L}_{d}} > 0.5, \text{ and}$ $\frac{\mathcal{L}_{\pi}}{\mathcal{L}_{e}+\mathcal{L}_{\mu}+\mathcal{L}_{\pi}+\mathcal{L}_{K}+\mathcal{L}_{p}+\mathcal{L}_{d}} > 0.1$
- $|M(J/\psi) m_{J/\psi}| < 75 \text{ MeV/c}^2$
- ISR photon not required (high efficiency)
- $|M_{recoil}^2(\pi^+\pi^-J/\psi)| < 2 (GeV/c^2)^2$
- Clear observation of ISR $\psi(2S)$ signals with low backgrounds.

Next step: "Y(4260)" rediscovery [expect ~60 events per 100 fb⁻¹]

$e^+e^- \rightarrow \psi(2S) \rightarrow \pi^0\pi^0 J/\psi$

Selection criteria:

- For photons from π^0 : $E_{\gamma} > 50$ MeV in endcaps and $E_{\gamma} > 30$ MeV in the barrel
- To suppress Bhabha background in $J/\psi \rightarrow ee$, the absolute difference between 180° and the two polar angles in the center-of-mass frame ($|\theta_{cm}(e^+) +$ $\theta_{\rm cm}(e^-) - 180^\circ$) is required to be greater than 5°.

 $M(\pi^0\pi^0J/\psi)$ (GeV/c²)

 $|M_{recoil}^2(\pi^0\pi^0 J/\psi)| < 1.5$ (GeV/c²)² to identify ISR events.

1500 MC MC Events/2 MeV/c² 00 00 Events/2 MeV/c² 000 000 $J/\psi \rightarrow \mu\mu$ 3.7 3.65 3.75 3.05 3.1 3.15 3.2 $M(\pi^0\pi^0J/\psi)$ (GeV/c²) $M(\mu^+\mu^-)$ (GeV/c²) 1000 MC Events/2 MeV/c² 000 000 MC 800 Events/2 MeV/c² 600 $J/\psi \rightarrow ee$ 400 200 03 3.05 3.1 3.2 3.65 3.7 3.75 3.15

Distributions from Phokhara MC simulations:

 $M(e^+e^-)$ (GeV/c²)

Next step: "Y(4260)" and neutral Z_c rediscoveries

$e^+e^- \rightarrow \psi(2S) \rightarrow \eta J/\psi$

Selection criteria:

- For photons from η : E_{γ} > 200 MeV.
- To suppress Bhabha background in $J/\psi \rightarrow ee$, the absolute difference between 180° and the two polar angles in the center-of-mass frame ($|\theta_{cm}(e^+) +$ $\theta_{\rm cm}(e^-) - 180^\circ$) is required to be greater than 5°.
- $|M_{recoil}^2(\eta J/\psi)| < 1.5 (GeV/c^2)^2$ to identify ISR events

Next step: explore the extra excited ψ and possible **Y** states

Summary

18-

- ISR physics is an interesting way to look for resonant states.
 This is unique to the e⁺e⁻ experiments.
- Preliminary results display the ISR system foundation we are building upon.
- The expected Belle II data sample of 50 ab⁻¹ will provide a lot of new opportunities for charmonium-like analyses via

ISR process.

All data samples at any energy points can be used for ISR analysis.

Backup slides