Ruling out some predictions of deeply-bound light-heavy tetraquarks using lattice QCD

Brian Colquhoun w/ R. J. Hudspith, A. Francis, R. Lewis, K. Maltman

27 July 2021

SCHEMATIC MODEL OF BARYONS AND MESONS

M. GELL-MANN

California Institute of Technology, Pasadena, California

Received 4 January 1964

The existence of tetraquarks (and other exotic states) has long been suspected!

A simpler and more elegant scheme can be constructed if we allow non-integral values for the charges. We can dispense entirely with the basic baryon b if we assign to the triplet t the following properties: spin $\frac{1}{2}$, $z = -\frac{1}{3}$, and baryon number $\frac{1}{3}$. We then refer to the members $u\hat{3}$, $d^{-\frac{1}{3}}$, and $s^{-\frac{1}{3}}$ of the triplet as "quarks" $\hat{6}$ and the members of the anti-triplet as anti-quarks \hat{q} . Baryons can now be constructed from quarks by using the combinations (qqq), (qqqqq), etc., while mesons are made out of (q \hat{q}), (qq \hat{q} q), etc. It is assuming that the lowest baryon configuration (qqq) gives just the representations 1, 8, and 10 that have been observed, while the lowest meson configuration (q \hat{q}) similarly gives just 1 and 8.

Diquarks

- ★ We are interested in:
 - ▶ light diquarks in a colour $\bar{3}_c$, flavour $\bar{3}_f$ and spin 0 configuration
 - "good light diquark"
 - \blacktriangleright heavy diquarks in a colour 3_c , relative s-wave configuration

The term "good diquark" is of Jaffe's invention, for a nice review: [hep-ph/0409065]

A. Francis talk on "good" and "bad" diquarks @ 16:20 Wed, "QCD and hadron structure" session

- ★ Degenerate heavy quarks: $J^P = 1^+$
- ★ Otherwise: we have access to $J^P = 0^+$ or $J^P = 1^+$
- ★ Light diquark \implies I = 0 or I = 1/2

Information from baryons and mesons

- Ordinary baryon and meson spectra can provide constraints for models
- ★ 3_c Q̄Q̄ serves as near-static colour source, like a single Q in a baryon (plus attractive colour Coulomb interaction)

Numbers from PDG & [1409.0497]

- Baryon spectrum suggests
 "good" light diquarks result in strong attraction.
- ★ Lighter quark mass → stronger attraction

Example of model and other predictions

We discuss model results completely for all channels in R.J. Hudspith, BC, A. Francis, R. Lewis and K. Maltman Phys. Rev. D 102, 114506 (2020), [2006.14294].

Example of model and other predictions

We discuss model results completely for all channels in R.J. Hudspith, BC, A. Francis, R. Lewis and K. Maltman Phys. Rev. D 102, 114506 (2020), [2006.14294].

Some lattice details

 $N_f = 2 + 1$ Wilson-clover ensembles – includes and extends PACS-CS ensembles

$L^3 \times T$	$m_{\pi} \; [\text{MeV}]$	$N_{\rm cnfg}$	a^{-1} [GeV]
	700	399	
	575	400	
$32^3 \times 64$	415	400	
	299	800	2.194(10)
	182*	121	
$48^3 \times 64$	192	122	
	165	88	

- ★ Coulomb gauge-fixed wall sources
- \star c quarks: Relativistic Heavy Quark action
- **\star** *b* quarks: Nonrelativistic QCD (NRQCD) action

Recent update: Box-Sinks

R. J. Hudspith, BC, A. Francis, R. Lewis, K. Maltman [2006.14294]

Improvement: box-sinks for better overlap with ground states.

$$S^{B}(x,t) = \frac{1}{N} \sum_{r^{2} \le R^{2}} S(x+r,t)$$

TETRAQUARKS ON THE LATTICE

Fitting our tetraquarks

Construct correlators, $C_{\mathcal{O}_1\mathcal{O}_2}(t) = \sum_n \frac{\langle 0|\mathcal{O}_1|n\rangle\langle n|\mathcal{O}_2|0\rangle}{2E_n} e^{-E_n t}$ from:

$$D(\Gamma_1, \Gamma_2) = (\psi_a^T C \Gamma_1 \phi_b) (\bar{\theta}_a C \Gamma_2 \bar{\omega}_b^T),$$

$$E(\Gamma_1, \Gamma_2) = (\psi_a^T C \Gamma_1 \phi_b) (\bar{\theta}_a C \Gamma_2 \bar{\omega}_b^T - \bar{\theta}_b C \Gamma_2 \bar{\omega}_a^T),$$

$$M(\Gamma_1, \Gamma_2) = (\bar{\theta} \Gamma_1 \psi) (\bar{\omega} \Gamma_2 \phi), \qquad N(\Gamma_1, \Gamma_2) = (\bar{\theta} \Gamma_1 \phi) (\bar{\omega} \Gamma_2 \psi),$$

$$O(\Gamma_1, \Gamma_2) = (\bar{\omega} \Gamma_1 \psi) (\bar{\theta} \Gamma_2 \phi), \qquad P(\Gamma_1, \Gamma_2) = (\bar{\omega} \Gamma_1 \phi) (\bar{\theta} \Gamma_2 \psi).$$

We want to solve a GEVP to get energy levels, "principle correlators":

$$C_i(t) = \sum_{j,k} V_{ij}(\tau)^{\dagger} C_{jk}(t) V_{ki}(\tau)$$

where V is made from columns of the eigenvector solution to:

$$C_{ij}(t)v_j(t) = \lambda_i C_{ij}(t+t_0)v_j(t) .$$

$\ell s ar c ar b$ tetraquarks

 $\ell s \bar{c} \bar{b}$ tetraquarks

 $u d \bar{c} \bar{b}$

 $ud\bar{c}\bar{b}$

 $sc\bar{b}\bar{b}$

 $sc\bar{b}\bar{b}$

 $uc\bar{b}\bar{b}$

 $uc\bar{b}\bar{b}$

Doubly-bottom tetraquarks

★ $I = 0, J^P = 1^+ u d\bar{b}\bar{b}$ and $I = 1/2, J^P = 1^+ \ell s \bar{b}\bar{b}$ strong-interaction stable. ★ Consistent binding of $u d\bar{b}\bar{b}$ found by lattice groups + preliminary $\ell s \bar{b}\bar{b}$.

Doubly-bottom tetraquarks

★ $I = 0, J^P = 1^+ u d\bar{b}\bar{b}$ and $I = 1/2, J^P = 1^+ \ell s \bar{b}\bar{b}$ strong-interaction stable. ★ Consistent binding of $u d\bar{b}\bar{b}$ found by lattice groups + preliminary $\ell s \bar{b}\bar{b}$.

Summary

★ $I = 0, J^P = 1^+ u d\bar{b}\bar{b}$ state consistently found stable on lattice: $\Delta E_{u d\bar{b}\bar{b}} \gtrsim 100 \text{ MeV}$

- ★ Evidence for stable $I = 1/2, J^P = 1^+ \ell s \bar{b} \bar{b}$: $\Delta E_{\ell s \bar{b} \bar{b}} \sim 50 \text{ MeV}$
- ★ No evidence for deep binding in any other channel considered.
- ★ Chiral model deep binding predictions incompatible with lattice results; nonchiral colour magnetic spin-spin interaction models OK within current lattice errors.

Thank you!

THANK YOU

EXTRAS

Type $(\psi\phi\theta\omega)$	$I(J)^P$	Diquark-Antidiquark	Dimeson
udcb/udsb/udsc		$D(\gamma_5, \gamma_i), D(\gamma_t \gamma_5, \gamma_i \gamma_t)$	$M(\gamma_5, \gamma_i) - N(\gamma_5, \gamma_i) M(I, \gamma_i \gamma_5) - N(I, \gamma_i \gamma_5)$
	$0(1)^+$	$E(\gamma_5, \gamma_i), E(\gamma_t \gamma_5, \gamma_i \gamma_t)$	$O(\gamma_5, \gamma_i) - P(\gamma_5, \gamma_i)$ $O(I, \gamma_i \gamma_5) - P(I, \gamma_i \gamma_5)$ $\epsilon_{ijk} M(\gamma_j, \gamma_k)$
	$0(0)^+$	$E(\gamma_5, \gamma_5), E(\gamma_t \gamma_5, \gamma_t \gamma_5)$	$M(\gamma_5, \gamma_5) - N(\gamma_5, \gamma_5)$ $M(I, I) - N(I, I)$ $M(\gamma_i, \gamma_i)$

Type $(\psi\phi\theta\omega)$	$I(J)^P$	Diquark-Antidiquark	Dimeson
udbb	$0(1)^+$	$D(\gamma_5, \gamma_i), \ D(\gamma_t \gamma_5, \gamma_i \gamma_t)$	$M(\gamma_5, \gamma_i) - N(\gamma_5, \gamma_i) M(I, \gamma_i \gamma_5) - N(I, \gamma_i \gamma_5)$
lsbb/ucbb/scbb	$\frac{1}{2}(1)^+$	$D(\gamma_5, \gamma_i), \ D(\gamma_t \gamma_5, \gamma_i \gamma_t)$	$ M(\gamma_5, \gamma_i), \ M(I, \gamma_i \gamma_5) N(\gamma_5, \gamma_i), \ N(I, \gamma_i \gamma_5) \epsilon_{ijk} M(\gamma_j, \gamma_k) $

Type $(\psi\phi\theta\omega)$	$I(J)^P$	Diquark-Antidiquark	Dimeson
uscb	$\frac{1}{2}(1)^+$	$D(\gamma_5,\gamma_i), \ D(\gamma_t\gamma_5,\gamma_i\gamma_t)$	$M(\gamma_5, \gamma_i), \ M(I, \gamma_i \gamma_5)$
			$N(\gamma_5, \gamma_i), \ N(I, \gamma_i \gamma_5)$
		$E(\gamma_5, \gamma_i), \ E(\gamma_t \gamma_5, \gamma_i \gamma_t)$	$O(\gamma_5, \gamma_i), \ O(I, \gamma_i \gamma_5)$
			$\epsilon_{ijk}M(\gamma_j,\gamma_k)$
	$\frac{1}{2}(0)^+$		$M(\gamma_5,\gamma_5), \ M(I,I)$
		$E(\gamma_5,\gamma_5), \ E(\gamma_t\gamma_5,\gamma_t\gamma_5)$	$N(\gamma_5,\gamma_5), \ N(I,I)$
			$M(\gamma_i, \gamma_i)$

NRQCD tuning

