P_c pentaquarks with pion exchange and quark core couplings

Yasuhiro Yamaguchi

Advanced Science Research Center, Japan Atomic Energy Agency, Japan

in collaboration with

Hugo García-Tecocoatzi (UNLP), Alessandro Giachino (INFN Genoa),

Atsushi Hosaka (RCNP, Osaka Univ.), Elena Santopinto (INFN Genoa),

Sachiko Takeuchi (Japan Coll. Social Work), Makoto Takizawa (Showa Pharmaceutical Univ.).

19th International Conference on Hadron Spectroscopy and Structure in memoriam Simon Eidelman (HADRON 2021), Mexico City, Mexico 26-31 July 2021

- 1. Introduction
 - Exotic hadrons
 - Hidden-charm pentaquarks P_c
- 2. Model setup
 - One pion exchange potential
 - Compact 5-quark potential
- 3. Numerical results for P_c
- 4. Numerical results for P_{cs} (Preliminary)
- 5. Summary

 $ar{c}$

Hadron structure: Constituent quark model

- Hadron = Quark composite system
- Ordinary Hadrons: Baryon (qqq) and Meson $(q\bar{q})$

Hadron structure: Constituent quark model

- Hadron = Quark composite system
- Ordinary Hadrons: Baryon (qqq) and Meson $(q\bar{q})$

Candidates of Exotic structures ?

Recent reports of Exotic hadrons!

▷ X(6900) (cc̄c̄c̄?)

LHCb, Science Bulletin 65 (2020) 1983

 $\triangleright Z_{cs} (c \overline{c} s \overline{u}?)$

BESIII, PRL126,102001 (2021)

▷ X_{0,1}(2900) (*c̄sud*?)

LHCb, PRL125, 242001 (2020), PRD102, 112003 (2020)

 $\triangleright P_c (uudc\bar{c}?),$

LHCb PRL115(2015)072001, 122(2019)222001

Y. Yamaguchi (JAEA)

Recent reports of Exotic hadrons!

▷ X(6900) (cccc?)

LHCb, Science Bulletin 65 (2020) 1983

 $\triangleright Z_{cs} (c \overline{c} s \overline{u}?)$

BESIII, PRL126,102001 (2021)

▷ X_{0,1}(2900) (*c̄sud*?)

LHCb, PRL125, 242001 (2020), PRD102, 112003 (2020)

 \triangleright P_c (uudc \bar{c} ?), P_{cs} (udsc \bar{c} ?)

LHCb PRL115(2015)072001, 122(2019)222001 , Sci.Bull.66(2021)1278-1287

Observation of two P_c pentaquarks in LHCb (2015)

• Observation of the Hidden-charm Pentaquark ($c\bar{c}uud$) in $\Lambda_b^0 \rightarrow J/\psi K^- p$ Decay? R.Aaij, et al. (LHCb collaboration) PRL115(2015)072001

Y. Yamaguchi (JAEA)

New LHCb analysis in 2019!

R. Aaij, et al. Phys.Rev.Lett. 122 (2019) 222001

- $P_c(4450)$ in 2015 $\longrightarrow P_c(4440)$ and $P_c(4457)$
 - $P_c(4440)$: $(M, \Gamma) = (4440.3, 20.6)$ MeV $P_c(4457)$: $(M, \Gamma) = (4457.3, 6.4)$ MeV
- Observation of New state!

 $P_c(4312)$: $(M, \Gamma) = (4311.9, 9.8)$ MeV

P_c(4380) in 2015? "these fits can neither confirm nor contradict the existence of the P_c(4380)⁺"

New LHCb analysis in 2019!

R. Aaij, et al. Phys.Rev.Lett. 122 (2019) 222001

- $P_c(4450)$ in 2015 $\longrightarrow P_c(4440)$ and $P_c(4457)$
 - $P_c(4440)$: $(M, \Gamma) = (4440.3, 20.6)$ MeV $P_c(4457)$: $(M, \Gamma) = (4457.3, 6.4)$ MeV
- Observation of New state!

 $P_c(4312)$: $(M, \Gamma) = (4311.9, 9.8)$ MeV

▶ $P_c(4380)$ in 2015? "these fits can neither confirm nor contradict the existence of the $P_c(4380)^+$ "

• Complementary experiments: $\gamma p \rightarrow J/\psi p$ in GlueX@J-Lab GlueX Collaboration, PRL123(2019)072001. \rightarrow No triangle singularity

No evidence of $\gamma p \rightarrow P_c \rightarrow J/\psi p$

What is the structure of the pentaquarks?

Proposals of various structures!

H.X.Chen, et al., Phys.Rept.639(2016)1, A.Esposito, et al., Phys.Rept.668(2016)1, A.Ali, et al., PPNP97(2017)123

Compact pentaquark (cc̄qqq)?
 S.G.Yuan, et al. (2012), L.Maiani, et al. (2015), S.Takeuchi, et al. (2017), J. Wu, et al. (2017), E. Hiyama, et al. (2018), ...
 Hadronic molecule (D∑^{*}_c, D^{*}∑_c,...)?
 J.-J.Wu et al., (2010) (2011), C. Garcia-Recio, et al. (2013), R. Chen, et al. (2015), Y.Shimizu, et al. (2016-2019), C. W. Xiao, et al. (2019), M.-Z. Liu, et al. (2019), M. L. Du, et al. (2019), ...
 Triangle singularity?

Triangle singularity? (Non-resonant explanation)

F.K.Guo, et al. (2015), X.H.Liu, et al. (2016), S.X.Nakamura PRD103, L111503 (2021), ...

Pentaquark (Compact)

Hadronic molecule

- Exotics as Hadronic molecule \Rightarrow Hadron (quasi) bound state
- \rightarrow expected near the thresholds

- Exotics as Hadronic molecule \Rightarrow Hadron (quasi) bound state
- \rightarrow expected near the thresholds

Analogous to Deuteron

- Exotics as Hadronic molecule \Rightarrow Hadron (quasi) bound state
- \rightarrow expected near the thresholds

$$P_c = \bar{D}^{(*)} \Sigma_c^{(*)}$$
 molecules?

- Exotics as Hadronic molecule \Rightarrow Hadron (quasi) bound state
- → expected near the thresholds

▷ Q. Interactions?: Heavy hadron interactions are not established yet...

- Exotics as Hadronic molecule \Rightarrow Hadron (quasi) bound state
- → expected near the thresholds

- ▷ Q. Interactions?: Heavy hadron interactions are not established yet...
- ⇒ Importance of π exchange is expected due to the heavy quark symmetry! S. Yasui and K. Sudoh, Phys. Rev. D **80** (2009), 034008
- ⇒ Hadronic molecular structure is favored?

Y. Yamaguchi (JAEA)

Compact 5*q* **state**?

- S. Takeuchi and M. Takizawa, PLB**764** (2017) 254-259. P_c states by the quark cluster model
- 5-quark configurations

Compact 5*q* **state**?

- S. Takeuchi and M. Takizawa, PLB**764** (2017) 254-259. P_c states by the quark cluster model
- 5-quark configurations

. . .

• $[q^3 8_c 3/2]$: Color magnetic int. is attractive!

Compact 5q state?

- S. Takeuchi and M. Takizawa, PLB**764** (2017) 254-259. P_c states by the quark cluster model
- 5-quark configurations

 $S_{q^3} = 1/2, \frac{3}{2}, S_{c\bar{c}} = 0, 1$ $S_{q^3} = 1/2, S_{c\bar{c}} = 0, 1$

- $[q^3 8_c 3/2]$: Color magnetic int. is attractive!
 - \Rightarrow Couplings to (qqc) baryon- $(q\bar{c})$ meson, e.g. $\bar{D}\Sigma_{c}$, are allowed!

Mixing of Compact state and Hadronic Molecule!

Y. Yamaguchi (JAEA)

Model setup in this study

Hadronic molecule + Compact state (5q)

Model setup in this study

► Hadronic molecule + Compact state (5q) ⇒ Meson-Baryon couples to 5q (Feshbach projection)

MB + 5q

Model setup in this study

► Hadronic molecule + Compact state (5q) \Rightarrow Meson-Baryon couples to 5q (Feshbach projection)

Meson-Baryon interactions

Long range interaction: One pion exchange potential (OPEP)
 Short range interaction: 5q potential

Y. Yamaguchi (JAEA)

Mass degeneracy $ightarrow ar{D} - ar{D}^*$, $\Sigma_{ m c} - \Sigma_{ m c}^*$ mixing!

• Mass Degeneracy of $(0^-, 1^-)$ Mesons, $(1/2^+, 3/2^+)$ Baryons

 \Rightarrow $(\overline{D}, \overline{D}^*)$ and (Σ_c, Σ_c^*) mixing Meson Baryon $\Sigma^*_{
m c}$ $\sim 65~{
m MeV}$ $\sim 140 {
m MeV}$ HQS Doublet HQS Doublet

► Coupled channels of $\overline{D}\Sigma_c$, $\overline{D}\Sigma_c^*$, $\overline{D}^*\Sigma_c$ and $\overline{D}^*\Sigma_c^*$! ⇒ These thresholds are close to each other

Mass degeneracy $ightarrow ar{D} - ar{D}^*$, $\Sigma_{ m c} - \Sigma_{ m c}^*$ mixing!

• Mass Degeneracy of $(0^-, 1^-)$ Mesons, $(1/2^+, 3/2^+)$ Baryons

 \Rightarrow $(\overline{D}, \overline{D}^*)$ and (Σ_c, Σ_c^*) mixing Meson Baryon $\Sigma^*_{
m c}$ **D*** $\sim 65~{
m MeV}$ Σ_{c} $\sim 140~{
m MeV}$ $\bar{\mathbf{D}}$ $\sim 170 \text{ MeV}$ HQS Doublet

Coupled channels of $\overline{D}\Sigma_{c}$, $\overline{D}\Sigma_{c}^{*}$, $\overline{D}^{*}\Sigma_{c}$ and $\overline{D}^{*}\Sigma_{c}^{*}$! \Rightarrow These thresholds are close to each other

► In addition, $\underline{\Lambda_{c}}(cqq)$: $\overline{D}^{(*)}\Lambda_{c}$ channel!? Y. Yamaguchi (JAEA) HADRON 2021

Mass degeneracy $ightarrow ar{D} - ar{D}^*$, $\Sigma_{ m c} - \Sigma_{ m c}^*$ mixing!

• Mass Degeneracy of $(0^-, 1^-)$ Mesons, $(1/2^+, 3/2^+)$ Baryons

 \Rightarrow $(\overline{D}, \overline{D}^*)$ and (Σ_c, Σ_c^*) mixing Meson Baryon $\Sigma_{\rm c}^*$ D^* $\sim 65~{
m MeV}$ Σ_{c} $\sim 140~{
m MeV}$ \bar{D} $\sim 170~{
m MeV}$ HQS Doublet Λ_{c}

6 meson-baryon components

$$(1) \ \bar{D}\Lambda_{\rm c}, (2) \ \bar{D}^*\Lambda_{\rm c}, (3) \ \bar{D}\Sigma_{\rm c}, (4) \ \bar{D}\Sigma_{\rm c}^*, \\(5) \ \bar{D}^*\Sigma_{\rm c}, (6) \ \bar{D}^*\Sigma_{\rm c}^*$$

11 / 19

$\overline{D}^{(*)} Y_c$ Interaction: Long range force

One pion exchange potential

1

(Contact term is removed)

 $g_{\pi} = 0.59, g_1 = 1.00$ Form factor with Cutoff Λ (determined by the hadron size)

$$F(\vec{q}^2) = \frac{\Lambda^2 - m_\pi^2}{\Lambda^2 + \vec{q}^2}, \quad \Lambda_{\bar{D}} \sim 1130 \text{ MeV}, \Lambda_{Y_c} \sim 840 \text{ MeV}$$

Y.Y, A. Giachino, A. Hosaka, E. Santopinto, S. Takeuchi, M. Takizawa, PRD96(2017)114031

Y. Yamaguchi (JAEA)

▶ 5-quark potential \Rightarrow s-channel diagram...But

► 5-quark potential \Rightarrow Local Gaussian potential is employed. Massive M_{5q} (few hundred MeV above $\bar{D}^*\Sigma_c^*$) \rightarrow Attractive

- $\frac{J \ [q^{3}8\frac{1}{2}]0 \ [q^{3}8\frac{1}{2}]1 \ [q^{3}8\frac{3}{2}]0 \ [q^{3}8\frac{3}{2}]1}{\frac{1}{2} \ 4816.2 \ 4759.1 \ \ 4772.2}$ $\frac{3}{2} \ \ 4822.3 \ 4892.5 \ 4835.4$ $\frac{5}{2} \ \ \ 4940.7$ Y. Yamaguchi (JAEA)
- Masses of compact 5q states with the color octet (8) q^3
- S. Takeuchi and M. Takizawa, PLB764 (2017) 254-259.
- $> \bar{D}^* \Sigma_c^* (4527.1 \,\mathrm{MeV})$

 $^*[q^3 8 S_{q^3}] S_{c\bar{c}}$

► 5-quark potential \Rightarrow Local Gaussian potential is employed. Massive M_{5q} (few hundred MeV above $\bar{D}^*\Sigma_c^*$) \rightarrow Attractive

Free Parameters

Strength f and Gaussian para. α (\rightarrow may be fixed in the future) (f vs E will be shown latter. $\alpha = 1$ fm⁻² is fixed.)

► 5-quark potential \Rightarrow Local Gaussian potential is employed. Massive M_{5q} (few hundred MeV above $\bar{D}^*\Sigma_c^*$) \rightarrow Attractive

Free Parameters

Strength f and Gaussian para. α (\rightarrow may be fixed in the future) (f vs E will be shown latter. $\alpha = 1$ fm⁻² is fixed.)

Relative strength S_i

Spectroscopic factors \Rightarrow determined by the spin structure of 5q

Y. Yamaguchi (JAEA)

Spectroscopic factor S_i

• Overlap of the color-flavor-spin wavefunctions of 5-quark state and $\bar{D}Y_{c}$

$$S_i = \left\langle (\bar{D}Y_{\rm c})_i \, \middle| \, 5q \right\rangle$$

Table: Spectroscopic factors S_i for each meson-baryon channel.

J		$S_{c\bar{c}}$	S_{3q}	$\bar{D}\Lambda_{\rm c}$	$\bar{D}^* \Lambda_{ m c}$	$\bar{D}\Sigma_{\rm c}$	$\bar{D}\Sigma_{\rm c}^*$	$\bar{D}^*\Sigma_{\rm c}$	$\bar{D}^* \Sigma_{\rm c}^*$
1/2	(i)	0	1/2	0.4	0.6	-0.4		0.2	-0.6
	(ii)	1	1/2	0.6	-0.4	0.2		-0.6	-0.3
	(iii)	1	3/2	0.0	0.0	-0.8		-0.5	0.3
3/2	(i)	0	3/2		0.0	—	-0.5	0.6	-0.7
	(ii)	1	1/2		0.7	—	0.4	-0.2	-0.5
	(iii)	1	3/2		0.0		-0.7	-0.8	-0.2
5/2	(i)	1	3/2	_					-1.0

Spectroscopic factor S_i

 \blacktriangleright Overlap of the color-flavor-spin wavefunctions of 5-quark state and $ar{D}Y_{
m c}$

$$S_i = \left\langle (\bar{D}Y_{\rm c})_i \, \middle| \, 5q \right\rangle$$

Table: Spectroscopic factors S_i for each meson-baryon channel.

J		$S_{c\bar{c}}$	S_{3q}	$\bar{D}\Lambda_{\rm c}$	$\bar{D}^* \Lambda_{\rm c}$	$\bar{D}\Sigma_{\rm c}$	$\bar{D}\Sigma_{\rm c}^*$	$\bar{D}^*\Sigma_{\rm c}$	$\bar{D}^* \Sigma_{\rm c}^*$
1/2	(i)	0	1/2	0.4	0.6	-0.4		0.2	-0.6
	(ii)	1	1/2	0.6	-0.4	0.2	—	-0.6	-0.3
	(iii)	1	3/2	0.0	0.0	-0.8	—	-0.5	0.3
3/2	(i)	0	3/2		0.0	—	-0.5	0.6	-0.7
	(ii)	1	1/2		0.7	—	0.4	-0.2	-0.5
	(iii)	1	3/2		0.0		-0.7	-0.8	-0.2
5/2	(i)	1	3/2						-1.0

Large S_i will play an important role.

Y. Yamaguchi (JAEA)

Numerical Results for Hidden-charm sector

Bound state and Resonance

- Coupled-channel Schrödinger equation for $\bar{D}\Lambda_c$, $\bar{D}^*\Lambda_c$, $\bar{D}\Sigma_c$, $\bar{D}\Sigma_c^*$, $\bar{D}^*\Sigma_c$, $\bar{D}^$
- ▶ For $J^P = 1/2^-$, $3/2^-$, $5/2^-$ (Negative parity)

Y. Yamaguchi (JAEA)

Y.Y., H.Garcia-Tecocoatzi, A.Giachino, A.Hosaka, E.Santopinto, S.Takeuchi, M.Takizawa, PRD 101 (2020) 091502(R)

Y.Y., H.Garcia-Tecocoatzi, A.Giachino, A.Hosaka, E.Santopinto, S.Takeuchi, M.Takizawa, PRD 101 (2020) 091502(R)

Agreement with $P_c(4312)$, $P_c(4440)$, and $P_c(4457)$

Y. Yamaguchi (JAEA)

Y.Y., H.Garcia-Tecocoatzi, A.Giachino, A.Hosaka, E.Santopinto, S.Takeuchi, M.Takizawa, PRD 101 (2020) 091502(R)

Agreement with $P_c(4312)$, $P_c(4440)$, and $P_c(4457)$

For Broad $P_c(4380)$, we obtain the similar mass. But width...?

Y. Yamaguchi (JAEA)

Y.Y., H.Garcia-Tecocoatzi, A.Giachino, A.Hosaka, E.Santopinto, S.Takeuchi, M.Takizawa, PRD 101 (2020) 091502(R)

Agreement with $P_c(4312)$, $P_c(4440)$, and $P_c(4457)$

For Broad $P_c(4380)$, we obtain the similar mass. But width...?

▶ Predictions: $(1/2^-, 3/2^-, 5/2^-)$ states below $\overline{D}^*\Sigma_c^*$

Y. Yamaguchi (JAEA)

 ▷ Our J^P assignment P_c(4440): 3/2⁻ P_c(4457): 1/2⁻
 E(1/2⁻) > E(3/2⁻)

 ▷ Our J^P assignment P_c(4440): 3/2⁻ P_c(4457): 1/2⁻
 E(1/2⁻) > E(3/2⁻)

- with Tensor (original) vs without Tensor for V^{π}
- ⇒ Mass and Width are **reduced!** $1/2^{-}$: $(E, \Gamma) = (4462, 1.6)$ [MeV] ⇒ (4462, 0.48) [MeV] $3/2^{-}$: $(E, \Gamma) = (4415, 7.5)$ [MeV] ⇒ (4433, 0.88) [MeV]

▷ Our J^P assignment $P_c(4440): 3/2^ P_c(4457): 1/2^ E(1/2^-) > E(3/2^-)$

- ▶ with Tensor (original) vs without Tensor for V^{π}
- ⇒ Mass and Width are **reduced!** $1/2^-$: $(E, \Gamma) = (4462, 1.6)$ [MeV] ⇒ (4462, 0.48) [MeV] $3/2^-$: $(E, \Gamma) = (4415, 7.5)$ [MeV] ⇒ (4433, 0.88) [MeV] $\lor V^{5q}$: Major role to determine Energy Levels

Y. Yamaguchi (JAEA)

▷ Our J^P assignment $P_c(4440): 3/2^ P_c(4457): 1/2^ E(1/2^-) > E(3/2^-)$

- ▶ with Tensor (original) vs without Tensor for V^{π}
- ⇒ Mass and Width are reduced! $1/2^-$: $(E, \Gamma) = (4462, 1.6)$ [MeV] ⇒ (4462, 0.48) [MeV] $3/2^-$: $(E, \Gamma) = (4415, 7.5)$ [MeV] ⇒ (4433, 0.88) [MeV] $\bigvee V^{5q}$: Major role to determine Energy Levels
 - \triangleright V^{π} : Major role to enhance **Decay Width** (Channel-coupling effect)

Y. Yamaguchi (JAEA)

Strange partner $P_{cs}(uds c\bar{c})$ in 2020! R.Aaij, *et al.* (LHCb collaboration), Sci. Bull. 66 (2021) 1278-1287

► Mass (M) and Width (Γ), $M = 4458.8 \pm 2.9^{+4.7}_{-1.1} \text{ MeV}, \quad \Gamma = 17.3 \pm 6.5^{+8.0}_{-5.7} \text{ MeV}$ $\Rightarrow 19 \text{ MeV below the } \Xi_{0}^{0} \overline{D}^{*0} \text{ threshold}$

Strange partner $P_{cs}(uds c\bar{c})$ in 2020! R.Aaij, *et al.* (LHCb collaboration), Sci. Bull. 66 (2021) 1278-1287

• Mass (*M*) and Width (Γ), $M = 4458.8 \pm 2.9^{+4.7}_{-1.1} \text{ MeV}, \quad \Gamma = 17.3 \pm 6.5^{+8.0}_{-5.7} \text{ MeV}$

 \Rightarrow 19 MeV below the $\Xi_c^0 \bar{D}^{*0}$ threshold

Two-peak structure hypothesis with predicted $J^P = 1/2^-, 3/2^-$ (B.Wang, et al., PRD101(2020)034018)

$$M_1 = 4454.9 \pm 2.7$$
 MeV, $\Gamma_1 = 7.5 \pm 9.7$ MeV

$$M_2 = 4467.8 \pm 3.7$$
 MeV, $\Gamma_2 = 5.2 \pm 5.3$ MeV

Y. Yamaguchi (JAEA)

Summary

- Hidden-charm pentaquarks P_c and P_{cs} reported by LHCb
- Hadronic molecule + Compact multiquark Model was applied
 - Long range force: π and K exchanges
 - Short range force: Coupling to Compact 5q states (5q potential)
- \blacktriangleright By solving the Schrödinger equations, $Y_c\bar{D}$ resonances are obtained close to thresholds
 - Short-range force determining E_{re}
 - \blacktriangleright Long-range force doing Γ

Y. Yamaguchi, A. Giachino, A. Hosaka,

E. Santopinto, S. Takeuchi, M. Takizawa,

Phys. Rev. D 101 (2020) 091502(R)