Two-state picture for the $D_0^*(2400)$

Miguel Albaladejo (IFIC)

HADRON2021, Mexico City, July 26-31, 2021

Outline

2 Amplitudes

With experiments

SU(3) study. Other predictions

Summary and outlook

Quark model in the singly heavy sector

• Quark model $c\bar{n}$ is still our baseline: "In this paper we present the results of a study of light and heavy mesons in soft QCD. We have found that all mesons-from the pion to the upsilon-can be described in a unified framework." [Godfrey, Isgur, PR,D32,189(85)]

The discovery of D^{*}_{s0}(2317) in 2003 (and D_{s1}(2460) later on) is "equivalent" to the discovery of X(3872) in charmonium-like system.

[BABAR, PRL,90,242001('03)] [CLEO, PR,D68,032002('03)]

Quark model in the singly heavy sector

• Quark model $c\bar{n}$ is still our baseline: "In this paper we present the results of a study of light and heavy mesons in soft QCD. We have found that all mesons-from the pion to the upsilon-can be described in a unified framework." [Godfrey, Isgur, PR,D32,189(85)]

The discovery of D^{*}_{s0}(2317) in 2003 (and D^{*}_{s1}(2460) later on) is "equivalent" to the discovery of X(3872) in charmonium-like system.

[BABAR, PRL,90,242001('03)] [CLEO, PR,D68,032002('03)]

Quark model in the singly heavy sector

• Quark model $c\bar{n}$ is still our baseline: "In this paper we present the results of a study of light and heavy mesons in soft QCD. We have found that all mesons-from the pion to the upsilon-can be described in a unified framework." [Godfrey, Isgur, PR,D32,189(85)]

The discovery of D^{*}_{s0}(2317) in 2003 (and D^{*}_{s1}(2460) later on) is "equivalent" to the discovery of X(3872) in charmonium-like system.

[BABAR, PRL,90,242001('03)] [CLEO, PR,D68,032002('03)]

Theoretical interpretations

c \bar{q} states

Colangelo, De Fazio, Phys. Lett. B **570**, 180 (2003) Dai *et al.* Phys. Rev. D **68**, 114011 (2003) Narison, Phys. Lett. B **605**, 319 (2005) Bardeen *et al.*, Phys. Rev. D **68**, 054024 (2003) Lee *et al.*, Eur. Phys. J. C **49**, 737 (2007) Wang, Wan, Phys. Rev. D **73**, 094020 (2006)

Pure tetraquarks

Cheng, Hou, Phys. Lett. B **566**, 193 (2003) Terasaki, Phys. Rev. D **68**, 011501 (2003) Chen, Li, Phys. Rev. Lett. **93**, 232001 (2004) Maiani *et al.*, Phys. Rev. D **71**, 014028 (2005) Bracco *et al.*, Phys. Lett. B **624**, 217 (2005) Wang, Wan, Nucl. Phys. A **778**, 22 (2006)

$c\bar{q}$ + tetraquarks or meson-meson

Browder *et al.*, Phys. Lett. B **578**, 365 (2004) van Beveren, Rupp, Phys. Rev. Lett. **91**, 012003 (2003)

Heavy-light meson-meson molecules

Barnes *et al.*, Phys. Rev. D **68**, 054006 (2003) Szczepaniak, Phys. Lett. B **567**, 23 (2003) Kolomeitsev, Lutz, Phys. Lett. B **582**, 39 (2004) Hofmann, Lutz, Nucl. Phys. A **733**, 142 (2004) Guo *et al.*, Phys. Lett. B **641**, 278 (2006) Gamermann *et al.*, Phys. Rev. D **76**, 074016 (2007) Faessler *et al.*, Phys. Rev. D **76**, 014005 (2007) Flynn, Nieves, Phys. Rev. D **75**, 074024 (2007) [Ortega et al., PR,D94,074037('16) (and references therein)]

- Problem: original Quark Model prediction mass is $\sim 150~\text{MeV}$ above experimental one.
- 1-loop correction to OGE potential ($\mathcal{O}(\alpha_s^2)$) reduces the mass to 2383 MeV, much closer to the experimental one.

[Lakhina, Swanson, PL, B650, 159('07)]

- ${}^{3}P_{0}$ mechanism to couple $c\bar{s}$ states to *DK* meson-pairs, $P_{DK} \sim 30\%$.
- Much better situation, but:
 - Still above DK threshold
 - This mechanism only affects the 0⁺ sector, still problems with 1⁺
 - Coupling to DK is included, but no DK "dynamics"

• Masses larger than the physical ones if using *cs* interpolators only.

Bali, Phys. Rev. D **68**, 071501 (2003) UKQCD Collab., Phys. Lett. B **569**, 41 (2003)

 Masses consistent with D₀^{*}(2400) and D_{s0}^{*}(2317) obtained when "meson-meson" interpolators are employed.

Mohler, Prelovsek, Woloshyn, Phys. Rev. D 87, 034501 (2013)

Mohler et al., Phys. Rev. Lett. 111, 222001 (2013)

Close to the physical point:

RQCD Collab., Phys. Rev. D 96, 074501 (2017)

- More complete studies from the HadSpec collaboration:
 - $D\pi$, $D\eta$ and $D_5\bar{K}$ coupled-channel scattering. A bound state with large coupling to $D\pi$ is identified with $D_0^*(2400)$.

HadSpec Collab., JHEP **1610**, 011 (2016)

- $D_{s0}^{*}(2317)$: A bound state is found in the *DK* channel, with:
 - $\Delta E = 25(3)$ MeV ($m_{\pi} = 391$ MeV)
 - $\Delta E = 57(3)$ MeV ($m_{\pi} = 239$ MeV)
 - Compare with experimental, $\Delta E \simeq$ 45 MeV (the dependence on m_π does not need to be monotonic!

HadSpec Collab., 2008.06432

Lightest 0⁺ open-charm situation and puzzles

- $D_{s0}^{*}(2317)$ (S, I) = (1,0) $M_{D_{s0}^{*}(2317)} = 2317.8 \pm 0.5$ MeV (PDG)
- **D**^{*}₀(2400) (*S*, *l*) = (0, 1/2) Not so well stablished:

		M (MeV)		
	Belle	2308 ± 36	138 ± 33	Phys. Rev. D 69, 112002 (2004)
leu	BaBar	2297 ± 22	137 ± 25	Phys. Rev. D 79, 112004 (2009)
Z	FOCUS	2407 ± 41	120 ± 40	Phys. Lett. B 586, 11 (2004)
				Phys. Rev. D 92 , 032012 (2015) $(B^0 \rightarrow \bar{D}^0 \kappa^+ \pi^-)$
ar.	LHCb	2349 ± 7	128 ± 29	Phys. Rev. D 92 , 012012 (2015) $(B^0 \rightarrow \bar{D}^0 \pi^+ \pi^-)$
S	FOCUS	2403 ± 38	142 ± 21	Phys. Lett. B 586, 11 (2004)

- PDG averages:
 - $D_0^{*0}(2400)$: $M = 2349 \pm 7 \text{ MeV}$

Three puzzles

- Mass problem: Why are $D_{s0}^{*}(2317)$ and $D_{s1}(2460)$ masses much lower than the CQM expectations?
- Splittings: Why $M_{D_{s1}(2460)} M_{D_{s1}^*(2317)} \simeq M_{D^*} M_D$ (within a few MeV)?
- Hierarchy: Why $M_{D_0^*(2400)} > M_{D_{c0}^*(2317)}$, *i.e.*, why $c\overline{u}$, $c\overline{d}$ heavier than $c\overline{s}$?

$D\pi$, $D\eta$, $D_s\overline{K}$ scattering amplitudes

• Coupled channel *T*-matrix: $D\pi$, $D\eta$, $D_s\overline{K}$ scattering $[J^{\rho} = 0^+, (S, I) = (0, \frac{1}{2})]$.

• Unitarity:
$$T^{-1}(s) = V^{-1}(s) - G(s)$$

• Chiral symmetry used to compute the $\mathcal{O}(p^2)$ potential:

$$f^{2}V_{ij}(s,t,u) = C_{LO}^{ij}\frac{s-u}{4} + \sum_{a=0}^{5}h_{a}C_{a}^{ij}(s,t,u)$$

Guo *et al.*, Phys. Lett. B **666**, 251 (2008) Liu *et al.*, Phys. Rev. D **87**, 014508 (2013)

- Free parameters previously fixed, not fitted (predictions!):
- Fitted to reproduce scattering lengths obtained in a LQCD simulation

Two-state picture for the D_0^* (2400)

Comparison with LQCD energy levels

M (MeV)	Latt.	Phys.
π	391	138
K	550	496
η	588	548
Ď	1886	1867
Ds	1952	1968

[M. A. et al., Phys. Lett. B 767, 465 (2017)]

- *E_n(L)* are provided for *Dπ*, *Dη*, *D_sK̄* in a recent LQCD simulation.
 [G. Moir *et al.*, JHEP 1610, 011 (2016)]
- **Red Bands:** Our amplitude in a finite volume.

[M. A. et al., Phys. Lett. B 767, 465 (2017)]

- Recall, no fit is performed.
- *E* > 2.7 GeV is beyond the range of validity for our *T*-matrix.
- Level below threshold, associated with a bound state.
- Second level has large shifts w. r. t. thresholds, non-interacting energy levels:
 - Strong movement of the amplitude.
 - Check if there is another state (resonance).

Spectroscopy: two-states for $D_0^*(2400)$

- For lattice masses, we find a bound state (000) and a resonance (110)
- For physical masses:
 - The bound state evolves into a resonance (100) above $D\pi$ threshold.
 - The resonance varies very little, and is still a resonance (110).
 - For both states, the coupling pattern is similar.
- PDG includes only one resonance, "suspiciously" lying between both.

Comparison with experimental data: ${\it B}^- ightarrow {\it D}^+ \pi^- \pi^-$

Du, MA, Fernández-Soler, Guo, Hanhart, Meißner, Nieves, Yao, PR, D98, 094018('18)

- $\mathcal{A}(s,z) = \mathcal{A}_0(s) + \sqrt{3}\mathcal{A}_1(s)\mathcal{P}_1(z) + \sqrt{5}\mathcal{A}_2(s)\mathcal{P}_2(z) + \dots$
- P-,D-wave as in LHCb paper
- S-wave parameterization:

$$\mathcal{A}_{0}(s) = \underbrace{\overset{B^{-}}{\overset{}}_{D^{+}}}_{\pi^{-}} + \underbrace{\overset{B^{-}}{\overset{}}_{D^{+}}}_{\pi, \eta, \bar{k}} \underbrace{\overset{\pi^{-}}{\overset{}}_{D^{+}}}_{\pi, \eta, \bar{k}} \underbrace{\overset{D^{+}}{\overset{}}_{\pi^{-}}}_{\pi^{-}}$$

$$\mathcal{A}_{0}(s) = \mathbf{A} \left\{ E_{\pi} \left[2 + G_{1}(s) \left(\frac{5}{3} T_{11}^{1/2}(s) + \frac{1}{3} T^{3/2}(s) \right) \right] + \frac{1}{3} E_{\eta} G_{2}(s) T_{21}^{1/2}(s) + \sqrt{\frac{2}{3}} E_{\bar{k}} G_{3}(s) T_{31}^{1/2}(s) \right\} + \mathbf{B} E_{\eta} G_{2}(s) T_{21}^{1/2}(s)$$

• Angular moments: $\langle P_{\ell} \rangle(s) = \int dz |\mathcal{A}(s,z)|^2 P_{\ell}(z)$

$$\begin{split} \langle \mathcal{P}_0 \rangle \propto |\mathcal{A}_0|^2 + |\mathcal{A}_1|^2 + |\mathcal{A}_2|^2 \ , \qquad \langle \mathcal{P}_2 \rangle \propto \frac{2}{5} \left| \mathcal{A}_1 \right|^2 + \frac{2}{7} \left| \mathcal{A}_2 \right|^2 + \frac{2}{\sqrt{5}} \left| \mathcal{A}_0 \right| \left| \mathcal{A}_2 \right| \cos(\delta_0 - \delta_2) \ , \\ \langle \mathcal{P}_{13} \rangle \equiv \langle \mathcal{P}_1 \rangle - \frac{14}{9} \langle \mathcal{P}_3 \rangle \propto \frac{2}{\sqrt{3}} \left| \mathcal{A}_0 \right| \left| \mathcal{A}_1 \right| \cos(\delta_0 - \delta_1) \ . \end{split}$$

M. Albaladejo (IFIC)

Du, MA, Fernández-Soler, Guo, Hanhart, Meißner, Nieves, Yao, PR,D98,094018('18)

- Parameters: $B/A = -3.6 \pm 0.1$, $a_A = 1.0 \pm 0.1$, $\chi^2/d.o.f. = 1.7$
- - This work. - LHCb. Bands: fit uncertainty
- Very good agreement with data & with LHCb fit
- Rapid movement in $\langle P_{13} \rangle$ [no $D_2(2460)$] between 2.4 and 2.5 GeV. Related to $D\eta$ and $D_s \bar{K}$ openings.
- Recall: these are the amplitudes with two states in the $D_0^*(2400)$ region, and no fit of the *T*-matrix parameters is done.

SU(3) light-flavor limit

[M. A. et al., Phys. Lett. B 767, 465 (2017)]

- SU(3) flavor limit: $m_i \rightarrow m = 0.49$ GeV, $M_i \rightarrow M = 1.95$ GeV.
- Irrep decomposition: $\overline{\mathbf{3}} \otimes \mathbf{8} = (\overline{\mathbf{15} \oplus \mathbf{6} \oplus \overline{\mathbf{3}}})$. *T* and *V* can be diagonalized:

$$V_d(s) = D^{\dagger}V(s)D = \text{diag}(V_{\overline{15}}(s), V_6(s), V_{\overline{3}}(s)) = A(s) \text{diag}(1, -1, -3)$$

• $\overline{15}$ is repulsive. 6 and $\overline{3}$ are attractive. "Curiously", $\overline{3}$ admits a $c\overline{q}$ interpretation.

• A recent LQCD calculation by the HadSpec Collaboration finds a similar picture.

[Hadron Spectrum Collab., 2008.06432]

SU(3) light-flavor limit

[M. A. et al., Phys. Lett. B 767, 465 (2017)]

- SU(3) flavor limit: $m_i \rightarrow m = 0.49$ GeV, $M_i \rightarrow M = 1.95$ GeV.
- Irrep decomposition: $\overline{\mathbf{3}} \otimes \mathbf{8} = (\overline{\mathbf{15} \oplus \mathbf{6} \oplus \overline{\mathbf{3}}})$. *T* and *V* can be diagonalized:

$$V_d(s) = D^{\dagger}V(s)D = \text{diag}(V_{\overline{15}}(s), V_6(s), V_{\overline{3}}(s)) = A(s) \text{diag}(1, -1, -3)$$

• $\overline{15}$ is repulsive. 6 and $\overline{3}$ are attractive. "Curiously", $\overline{3}$ admits a $c\overline{q}$ interpretation.

• A recent LQCD calculation by the HadSpec Collaboration finds a similar picture.

[Hadron Spectrum Collab., 2008.06432]

Predictions for other sectors: charm

				0+		1+	
(<i>S</i> , <i>I</i>) Channels	15	6		М	Г/2	М	Г/2
				(R) 2105 ⁺⁶ ₋₈	102^{+10}_{-12}	(R) 2240 ⁺⁵	93^{+9}_{-9}
$\left(0,\frac{1}{2}\right) D^{(*)}\pi, D^{(*)}\eta, D^{(*)}_{s}\bar{K}$		1	1	(R) 2451 ⁺³⁶ ₋₂₆	134^{+7}_{-8}	(R) 2240 ⁺⁵ ₋₆	
(1,0) $D^{(*)}K, D^{(*)}_{s}\eta$	1	X	✓	(B) 2315 ⁺¹⁸ ₋₂₈		(B) 2436 ⁺¹⁶ ₋₂₂	
$(-1,0) D^{(*)}\bar{K}$	×	1	X	(V) 2342 ⁺¹³ ₋₄₁		-	
(1,1) $D_{\rm s}^{(*)}\pi, D^{(*)}K$	1	1	X	-		-	

- HQSS relates 0^+ ($D_{(s)}P$) and 1^+ ($D_{(s)}^*P$) sectors: similar resonance pattern.
- Two pole structure: higher D_1 pole probably affected by ρ channels.
- $D\bar{K}$ [0⁺, (-1,0)]: this virtual state (from **6**) has a large impact on the scattering length, $a_{(-1,0)}^{D\bar{K}} \simeq 0.8$ fm. (Rest of scattering lengths are $|a| \simeq 0.1$ fm.)

Predictions for other sectors: bottom

				0+		1+	
(S, I) Channels	15	6	3	М Г/	2	M	Г/2
				(R) 5537 ⁺⁹ ₋₁₁ 116 ⁻	+14 -15	(R) 5581 ⁺⁹ ₋₁₁	115^{+13}_{-15}
$\left(0,\frac{1}{2}\right) \ \bar{B}^{(*)}\pi, \bar{B}^{(*)}\eta, \bar{B}^{(*)}_{S}\bar{K}$	1	1	1	(R) 5537^{+9}_{-11} 116 (R) 5840^{+12}_{-13} 25^{+6}_{-13}	5 5		
(1,0) $\bar{B}^{(*)}K, \bar{B}^{(*)}_{s}\eta$	1	X	1	(B) 5724 ⁺¹⁷ ₋₂₄		(B) 5768 ⁺¹⁷ ₋₂₃	
$(-1,0) \ \bar{B}^{(*)}\bar{K}$	×	1	X	(V–B) thr.		(V–B) t	hr.
(1,1) $\bar{B}_{s}^{(*)}\pi, \bar{B}^{(*)}K$	1	✓	X	-		-	

- Heavy flavour symmetry relates charm (*D*) and bottom (\overline{B}) sectors.
- $(0, \frac{1}{2})$: B_0^* , two-pole pattern also observed.
- (-1,0): $[B^{(*)}\overline{K}]$: very close to threshold. Relevant prediction. Can be either bound or virtual (6) within our errors.
- (1, 1): [B̄_sπ, B̄K, 0⁺], X(5568) channel. No state is found: 15 and 6. If it exists, it is not generated with these B_sπ, BK̄ interactions.
 M. A. et al., Phys. Lett. B 757, 515 (2016); Guo et al., Commun. Theor. Phys. 65, 593 (2016)
- (1, 0): Our results for B_{s0}^* and B_{s1} agree with other results from LQCD: Lang *et al.*, Phys. Lett. B **750**, 17 (2015); M. A. *et al*. Eur. Phys. J. **C77**, 170 (2017)
- Comparison of 0^+ , 1^+ beauty states by Colangelo *et al.*, Phys. Rev. D **86** 054024 (2012): agreement in (1,0) [*bs*], but not in (0, 1/2) [*bq*].

M. Albaladejo (IFIC)

Two-state picture for the D_0^* (2400)

- The $D_0^*(2400)$ structure is actually produced by two different states (poles), together with complicated interferences with thresholds
- This two-state structure for $D_0^*(2400)$ was previously reported:

Kolomeitsev, Lutz, Phys. Lett. B 582, 39 (2004)

Guo et al., Phys. Lett. B 641, 278 (2006)

Guo et al., Eur. Phys. J. A 40, 171 (2009)

- The amplitudes containing these two-poles are compatible with available LQCD simulations and experimental data
- This picture for $D_0^*(2400)$ and $D^*(2317)$ nicely solves simultaneously all the puzzles.

Open questions for the community

- Need of more collaboration between (and simultaneous use of!) different "subcommunities": LQCD, molecular/tetraquarks/QM models...
- Spectroscopy, mixing:

Specific example of $D_{s0}^{*}(2317)$, take for granted the presence of a CQM $c\bar{s}$ state. Theoretical possibilities:

- Genuine *c*₃, (very) renormalized by *DK* threshold. Or renormalized by *DK* interactions themselves?
- Or, there is a S = 1, I = 0 state coming from *DK* interactions in addition to the $c\bar{s}$ state. If so, where are those two poles? Which is which?

• Nature/size:

• Can we address the question of 4q, $q\bar{q}$, molecule based on the size of the object?

- For $\pi\pi$ scattering, σ meson: MA, Oller, PR,D86,034003('12)
 - $\sqrt{\langle r^2 \rangle_\sigma^S} \simeq 0.44~{\rm fm}$
 - $\sqrt{\langle r^2
 angle^S_\pi} \simeq 0.81 \, {\rm fm}$
- Perhaps only theoretical? Future lattice QCD calculations?

Briceño et al., PR,D100,034511('19); PR,D100,114505('19), ...

Two-state picture for the D_0^* (2400)

Two-state picture for the $D_0^*(2400)$

Miguel Albaladejo (IFIC)

HADRON2021, Mexico City, July 26-31, 2021

Riemann sheets:

 $\mathcal{G}_{ii}(s) \rightarrow \mathcal{G}_{ii}(s) + i$

SU(3) limit:

$$\begin{array}{ll} \frac{p_i(s)}{4\pi\sqrt{s}} \,\xi_i & \qquad m_i = m_i^{\rm phy} + x(m-m_i^{\rm phy}) \,, \quad (m=0.49 \; {\rm GeV}) \,, \\ M_i = M_i^{\rm phy} + x(M-M_i^{\rm phy}) \,, \quad (M=1.95 \; {\rm GeV}) \,. \end{array}$$

- Physical case (x = 0): RS specified by ($\xi_1 \xi_2 \xi_3$), $\xi_i = 0$ or 1.
- SU(3) symmetric case (x = 1): all channels have the same threshold, so there are only two RS (000) and (111).
- To connect the lower pole with the T₆ virtual state,

$$\xi_3 = x$$
 (1, 1, 0) \rightarrow (1, 1, x)

• To connect the lower pole with the $T_{\overline{3}}$ bound state,

$$\xi_1 = 1 - x$$
 (1,0,0) \rightarrow (1 - x,0,0)

Connecting physical (x = 0) and flavor SU(3) (x = 1) limits:

$$\begin{split} m_i &= m_i^{\rm phy} + x(m-m_i^{\rm phy}) \;, \quad (m = 0.49 \; {\rm GeV}) \;, \\ M_i &= M_i^{\rm phy} + x(M-M_i^{\rm phy}) \;, \quad (M = 1.95 \; {\rm GeV}) \;. \end{split}$$

- The high D₀^{*} connects with a 6 virtual state (unph. RS, below threshold).
- The low D_0^* connects with a **3** bound state (ph. RS, below threshold).
- The D^{*}_{s0}(2317) also connects with the 3 bound state.

- The low D_0^* and the $D_{s0}^*(2317)$ are SU(3) flavor partners. ٢
- This solves the "puzzle" of $D_{s0}^*(2317)$ being lighter than $D_0^*(2400)$: it is not, the lower D_0^* pole (M = 2105 MeV) is lighter. M. Albaladejo (IFIC) Two-state picture for the D_0^* (2400) HADRON2021

Form factors in semileptonic ${\it D} ightarrow \pi ar{\ell} u_\ell$

D.-L. Yao, P. Fernández-Soler, MA, F.-K. Guo, J. Nieves, Eur. Phys. J. C 78, 310 (2018)

• General definitions:

$$\frac{\mathrm{d}\Gamma(D \to \pi \bar{\ell} \nu_{\ell})}{\mathrm{d}q^2} = \frac{G_F^2}{24\pi^3} |\vec{p}_{\pi}|^3 |V_{cd}|^2 |f_+(q^2)| \,. \qquad [q^2 = 0: f_+(0) = f_0(0)]$$

$$\langle \pi(p')|\bar{q}\gamma^{\mu}Q|D(p)\rangle = f_{+}(q^{2})\left[\Sigma^{\mu}-\frac{m_{\bar{D}}-m_{\pi}}{q^{2}}q^{\mu}\right]+f_{0}(q^{2})\frac{m_{\bar{D}}-m_{\pi}}{q^{2}}q^{\mu},$$

• "Isospin" form factors, related to $D\pi$, $D\eta$, $D_s\bar{K}$ scattering:

$$\mathcal{F}^{(0,1/2)}(s) \equiv \begin{pmatrix} -\sqrt{\frac{3}{2}} f_0^{D^0 \to \pi^-}(s) \\ -f_0^{D^+ \to \eta}(s) \\ -f_0^{D^+ \to K^0}(s) \end{pmatrix}, \qquad \text{Im}\mathcal{F}(s) = T^*(s)\Sigma(s)\mathcal{F}(s)$$

• Write form factors as Omnés matrix times polynomials

$$\mathcal{F}(s) = \Omega(s) \cdot \mathcal{P}(s)$$

• Polynomials fixed so as to reproduce the NLO chiral lagrangian:

$$\begin{split} \mathcal{L}_0 &= f_{\mathcal{P}} \left(\mathring{m} \mathcal{P}_{\mu}^* - \partial_{\mu} \mathcal{P} \right) u^{\dagger} J^{\mu} , \\ \mathcal{L}_0 &= \beta_1 \mathcal{P} \, u \left(\partial_{\mu} U^{\dagger} \right) J^{\mu} + \beta_2 (\partial_{\mu} \partial_{\nu} \mathcal{P}) \, u \left(\partial^{\nu} U^{\dagger} \right) J^{\mu} \end{split}$$

	This work	Exp.				
$10^{3} V_{ub} $		4.49(24) [Incl.] 3.72(19) [Excl.]				
V _{cd}	0.253(18)	0.220(5)				
V _{cs}	0.253(18) 0.934(35)	0.995(16)				

- Points mostly from LQCD
- Also LCSR for $q^2 \rightarrow 0$
- Good agreement in general
- CKM matrix can also be calculated
- Definitive results may differ...

- Lightest systems to test ChPT with heavy mesons, besides $D^* \rightarrow D\pi$.
- $D\pi$ interactions (where it shows up) are relevant, since $D\pi$ appears as a final state in many reactions that are being considered now (*i.e.*, $Z_c(3900)$ and $\overline{D}^*D\pi$)
- $D_0^*(2400)$ is important in weak interactions and CKM parameters:

Flynn, Nieves, Phys. Rev. D 76, 031302 (2007)

D.-L. Yao, P. Fernández-Soler, MA, F.-K. Guo, J. Nieves, Eur. Phys. J. C 78, 310 (2018)

- It determines the shape of the scalar form factor $f_0(q^2)$ in semileptonic $D \to \pi$ decays.
- Relation to $|V_{cd}|$: $f_+(0) = f_0(0)$ and $d\Gamma \propto |V_{cd}f_+(q^2)|^2$.
- Even more interesting: the bottom analogue $|V_{ub}|$.

$D\pi$, $D\eta$, $D_s\overline{K}$ energy levels in a finite volume

- Periodic boundary conditions imposes momentum quantization
- Lüscher formalism:

Commun. Math. Phys. **105**, 153 (1986) Nucl. Phys. B **354**, 531 (1991)

In practice, changes in the *T*-matrix: *T*(*s*) → *T*(*s*, *L*):

Döring et al., Eur. Phys. J. A 47, 139 (2011)

$$\mathcal{G}_{ii}(s) \to \widetilde{\mathcal{G}}_{ii}(s,L) = \mathcal{G}_{ii}(s) + \lim_{\Lambda \to \infty} \left(\frac{1}{L^3} \sum_{\vec{n}}^{|\vec{q}| < \Lambda} l_i(\vec{q}\,) - \int_0^{\Lambda} \frac{q^2 dq}{2\pi^2} \, l_i(\vec{q}\,) \right) \;,$$

$$V(s) \to V(s,L) = V(s)$$
,
 $T^{-1}(s) \to \widetilde{T}^{-1}(s,L) = V^{-1}(s) - \widetilde{\mathcal{G}}(s,L)$,

• Free energy levels: $E_{n,\text{free}}^{(i)}(L) = \omega_{i1}((2\pi n/L)^2) + \omega_{i2}((2\pi n/L)^2)$

 $\begin{array}{c} \bullet & \text{Interacting energy levels } F_{-}(I) \cdot \widetilde{T}^{-1}(F^{2}(I) \mid I) = 0 \text{ (noles of the } \widetilde{T}\text{-matrix)} \\ & \text{M. Albaladejo (IFIC)} & \text{HADRON2021} & 2 \end{array}$

*T***-matrix and analytical continuations**

- Normalization: $-ip_{ii}(s)T_{ii}(s) = 4\pi\sqrt{s}\left(\eta_i(s)e^{2i\delta_i(s)}-1\right)$.
- $G_{ii}(s) = G(s, m_i, M_i)$, regularized with a subtraction constant $a(\mu)$ ($\mu = 1$ GeV).
- Riemann sheets (RS) denoted as (ξ₁ξ₂ξ₃):

• Other famous two-poles structures rooted in chiral dynamics:

 $\Lambda(1405) [\Sigma \pi, N\bar{K}]$

Oller, Meißner, Phys. Lett. B **500**, 263 (2001) Jido *et al.*, Nucl. Phys. A **725**, 181 (2003) García-Recio *et al.*, Phys. Lett. B **582**, 49 (2004) Magas *et al.*, Phys. Rev. Lett. **95**, 052301 (2005)

$K_1(1270)$

Roca *et al.*, Phys. Rev. D **72**, 014002 (2005) Geng *et al.*, Phys. Rev. D **75**, 014017 (2007) García-Recio *et al.*, Phys. Rev. D **83**, 016007 (2011)

• Chiral dynamics:

- Incorporates the *SU*(3) light-flavor structure,
- Determines the strength of the interaction,
- Ensures lightness of Goldstone bosons, which in turn separates generating channels from higher hadronic channels.

- We have studied $D\pi$, $D\eta$, $D_s\bar{K}$ scattering $[0^+, (S, I) = (0, \frac{1}{2})]$
- So far only one pole reported experimentally, but we have presented a strong support for the existence of two $D_0^*(2400)$ states (different poles):
- Succesful, no-fitting comparison of our *T*-matrix with the energy levels of a recent LQCD simulation.
- We are also able to reproduce the LHCb experimental information for $B^- \rightarrow D^+ \pi^- \pi^-$, also without fitting any of the *T*-matrix parameters.
- The lower pole ($M = 2105^{+6}_{-8}$ MeV) is lighter than $D^*_{s0}(2317)$, solving this (apparent) puzzle.
- A SU(3) study shows that $D_{s0}^*(2317)$ and the lower $D_0^*(2400)$ are flavour partners: they complete a $\overline{3}$ multiplet.
- Predictions for other sectors (heavy vectors, bottom sector) have been also given. In particular:
 - The two-pole structure is also seen in the bottom sector.
 - A very near-threshold state (bound or virtual) is predicted for BK ($\overline{B}\overline{K}$).