Recent Advances in Global Analyses of Pion PDFs
 Patrick Barry (Jefferson Lab)
 HADRON 2021

What do we want?

To study the makeup of nuclear matter

Building blocks of nature are quarks and gluons

What's the problem?

Quarks and gluons are not directly measurable!

Motivation

- QCD allows us to study the structure of hadrons in terms of partons (quarks, antiquarks, and gluons)
- Use factorization theorems to separate hard partonic physics out of soft, non-perturbative objects to quantify structure

Game plan

What to do:

- Define a structure of hadrons in terms of quantum field theories
- Identify theoretical observables that factorize into non-perturbative objects and perturbatively calculable physics
- Perform global QCD analysis as structures are universal and are the same in all processes

Complicated Inverse Problem

- Factorization theorems involve convolutions of hard perturbatively calculable physics and non-perturbative objects

$$
\frac{d \sigma}{d \Omega} \propto \mathcal{H} \otimes f=\int_{x}^{1} \frac{d \xi}{\xi} \mathcal{H}(\xi) f\left(\frac{x}{\xi}\right)
$$

- Parametrize the non-perturbative objects and perform global fit

Pions

- Pion is the Goldstone boson associated with spontaneous symmetry breaking of chiral $S U(2)_{L} \times S U(2)_{R}$ symmetry
- Lightest hadron as $\frac{m_{\pi}}{M_{N}} \ll 1$ and dictates the nature of hadronic interactions at low energies
- Simultaneously a pseudoscalar meson made up of q and \bar{q} constituents

Experiments to Probe Pion Structure

- Drell-Yan (DY)

- Accelerating pion allows for time dilation and longer lifetime
- Leading Neutron (LN)
 target proton knocks out an almost on-shell pion to probe

Leading Neutron (LN)

$$
\frac{d \sigma}{d x d Q^{2} d \bar{x}_{L}} \propto f_{\pi N}\left(\bar{x}_{L}\right) \times \sum_{\substack{i \\ \text { barry@jab.org }}} \int_{x / \bar{x}_{L}}^{1} \frac{d \xi}{\xi} C(\xi) f_{i}\left(\frac{x / \bar{x}_{L}}{\xi}, \mu^{2}\right)
$$

Splitting Function and Regulators

Amplitude for proton to dissociate into a π^{+}and neutron:

$$
f_{\pi N}\left(\bar{x}_{L}\right)=\frac{g_{A}^{2} M^{2}}{\left(4 \pi f_{\pi}\right)^{2}} \int d k_{\perp}^{2} \frac{\bar{x}_{L}\left[k_{\perp}^{2}+\bar{x}_{L}^{2} M^{2}\right]}{x_{L}^{2} D_{\pi N}^{2}}|\mathcal{F}|^{2},
$$

$$
D_{\pi N} \equiv t-m_{\pi}^{2}=-\frac{1}{1-y}\left[k_{\perp}^{2}+y^{2} M^{2}+(1-y) m_{\pi}^{2}\right]
$$

$$
\mathcal{F}= \begin{cases}\text { (i) } \exp \left(\left(M^{2}-s\right) / \Lambda^{2}\right) & s \text {-dep. exponential } \\ \text { (ii) } \exp \left(D_{\pi N} / \Lambda^{2}\right) & t \text {-dep. exponential } \\ \text { (iii) }\left(\Lambda^{2}-m_{\pi}^{2}\right) /\left(\Lambda^{2}-t\right) & t \text {-dep. monopole } \\ \text { (iv) } \bar{x}_{L}^{-\alpha_{\pi}(t)} \exp \left(D_{\pi N} / \Lambda^{2}\right) & \text { Regge } \\ \text { (v) }\left[1-D_{\pi N}^{2} /\left(\Lambda^{2}-t\right)^{2}\right]^{1 / 2} & \text { Pauli-Villars }\end{cases}
$$

- We examine five regulators, and we fit Λ
- \mathcal{F} is a UV regulator, which the data chooses

Datasets -- Kinematics

- Large x_{π}-- Drell-Yan (DY)
- Small x_{π}-- Leading Neutron (LN)
- Not much data overlap
- In DY:

$$
x_{\pi}=\frac{1}{2}\left(x_{F}+\sqrt{x_{F}^{2}+4 \tau}\right)
$$

- In LN:

$$
x_{\pi}=x_{B} / \bar{x}_{L}
$$

JAM18 Pion PDFs

- Lightly shaded bands - only Drell-Yan data
- Solid bands fit to both Drell-Yan and LN data

PCB, N. Sato, W. Melnitchouk and Chueng-Ryong Ji,
Phys. Rev. Lett. 121, 152001 (2018).

Large- x_{π} behavior

- Generally, the parametrization lends a behavior as $x_{\pi} \rightarrow 1$ of the valence quark PDF of $q_{v}(x) \propto(1-x)^{\beta}$
- For a fixed order analysis, we find $\beta \approx 1$
- Debate whether $\beta=1$ or $\beta=2$
- Aicher, et al. (2010) found $\beta=2$ with threshold resummation

Threshold Resummation in Pion Drell-Yan

PCB, Chueng-Ryong Ji (NCSU), N. Sato (Jefferson Lab), W. Melnitchouk (Jefferson Lab)

Soft Gluon Resummation

- Fixed-target Drell-Yan notoriously has large- x_{F} contamination of higher orders
- Large logarithms may spoil perturbation
- Focus on corrections to the most important $q \bar{q}$ channel
- Resum contributions to all orders of α_{s}

Methods of Resummation

- Resummation is performed in conjugate space
- Drell-Yan data needs two transformations
- We can perform a Mellin-Fourier transform to account for the rapidity
- A cosine appears while doing Fourier transform; options:

1) Take first order expansion, cosine ≈ 1
2) Keep cosine intact

- Can additionally perform a Double Mellin transform
- Explore the different methods and analyze effects

Data and Theory Comparison - Drell-Yan

- Cosine method tends to overpredict the data at very large x_{F}
- Double Mellin method is qualitatively very similar to NLO
- Resummation is largely a high- x_{F} effect

Method	$\chi^{2} /$ npts	
NLO	0.85	
NLO+NLL cosine	1.29	Slightly disfavored
NLO+NLL expansion	0.95	
NLO+NLL double Mellin	0.80	

PDF Results

- Large x behavior in valence depends on prescription

Effective β_{v} parameter

- $q_{v}(x) \sim(1-x)^{\beta_{v}}$ as $x \rightarrow 1$
- Threshold resummation does not give universal behavior of β_{v}
- NLO and double Mellin give $\beta_{v} \approx 1$
- Cosine and Expansion give $\beta_{v}>2$

Transverse Momentum Dependent Drell-Yan

PHYSICAL REVIEW D 103, 114014 (2021)

Towards the three-dimensional parton structure of the pion: Integrating transverse momentum data into global QCD analysis
N. Y. Cao $\odot,{ }^{1}$ P. C. Barry $\odot{ }^{2,3}$ N. Sato, ${ }^{3}$ and W. Melnitchouk \oplus^{3}

Jefferson Lab Angular Momentum (JAM) Collaboration
${ }^{1}$ Harvard University, Cambridge, Massachusetts 02138, USA
${ }^{2}$ North Carolina State University, Raleigh, North Carolina 27607, USA
${ }^{3}$ Jefferson Lab, Newport News, Virginia 23606, USA

p_{T}-dependent spectrum for pion data

- Small- p_{T} data - TMD factorization - partonic transverse momentum
- Large $-p_{\mathrm{T}}$ data - collinear factorization - recoil transverse momentum

See L. Gamberg on Wed. @ 10:25am

JAM20 Pion PDFs

Fixed Order Analysis

Inclusion of Lattice Data

PCB, J. Karpie (Columbia), W. Melnitchouk (Jefferson Lab), C. Monahan (William \& Mary, Jefferson Lab), K. Orginos (William \& Mary, Jefferson Lab), Jian-Wei Qiu (Jefferson Lab), D. Richards (Jefferson Lab), N. Sato (Jefferson Lab), R. S. Sufian (William \& Mary, Jefferson Lab), S.

Zafeiropoulos (Aix Marseille Univ.)

Lattice data to examine from JLab Hadstruct

- Reduced pseudo loffe time distributions

B. Joó, J. Karpie, K. Orginos, A. V. Radyushkin, D. G.

Richards, R. S. Sufian and S. Zafeiropoulos,
Phys. Rev. D 100, 114512 (2019).

- Current-Current Correlators

Noisier with large uncertainties
R. S. Sufian, C. Egerer, J. Karpie, R. G. Edwards, B. Joó, Y. Q. Ma, K. Orginos, J. W. Qiu and D. G. Richards,

Phys. Rev. D 102, 054508 (2020).

Connection of PDFs with Lattice Data

- Calculate the theoretical observable in a similar fashion as dealing with experimental data
- "Good lattice cross section" with matching is shown by

$$
\sigma_{n / h}\left(\omega, \xi^{2}\right) \equiv\langle h(p)| T\left\{\mathcal{O}_{n}(\xi)\right\}|h(p)\rangle
$$

Lattice observable such as reduced pseudo loffe time distribution or current-current correlators

$$
=\sum_{i} f_{i / h}\left(x, \mu^{2}\right) \otimes K_{n / i}\left(x \omega, \xi^{2}, \mu^{2}\right)
$$

Matching coefficients observable dependent quantities

Impact of reduced pseudo loffe time dependence

- Central values do not change much
- Uncertainties on valence PDF reduce by $35-45 \%$

Future Experiments

PCB, Chueng-Ryong Ji (NCSU), W. Melnitchouk (Jefferson Lab), N. Sato (Jefferson Lab)

Future Experiments

- TDIS experiment at 12 GeV upgrade from JLab, which will tag a proton in coincidence with a spectator proton
- Gives leading proton observable, complementary to LN, but with a fixed target experiment instead of collider (HERA)

- Proposed EIC can measure a LN observable
- Integrated luminosity is so large that systematics dominate uncertainties
- Proposed COMPASS++/AMBER also give π-induced DY data
- Both π^{+}and π^{-}beams on carbon and tungsten targets

EIC Impact

- Take into account the theoretical systematic errors of changing the UV regulator of the splitting function
- Assume a 1.2% systematic uncertainty

JLab TDIS Impact

- Fixed-target nature of JLab TDIS constrains large- x valence quark PDF
- Assume a 6.5% systematic uncertainty on data

Conclusions

- JAM performs simultaneous fits of non-perturbative objects to world data
- Pion PDF extraction is influenced greatly by the method of threshold resummation used
- Successful description of large p_{T} Drell-Yan data from the pion
- Lattice data constrains the valence quark PDF in the pion
- We look forward to future experiments for further constraints on pion PDFs

Backup

Previous Pion PDFs

- Fits to Drell-Yan, prompt photon, or both

GRS, GRV, and SMRS
Z. Phys. C 67, 433 (1995).

Eur. Phys. J. C 10313 (1997)
Phys. Rev. D 452349 (1992)

ASV valence PDF
Phys. Rev. Lett. 105, 114023 (2011)

Phys. Rev. D 102, 014040 (2020).

Issues with Perturbative Calculations

$\hat{\sigma} \sim \delta(1-z)+\alpha_{S}(\log (1-z))_{+} \longrightarrow \hat{\sigma} \sim \delta(1-z)\left[1+\alpha_{S} \log (1-\tau)\right]$

- If τ is large, can potentially spoil the perturbative calculation
- Improvements can be made by resumming $\log (1-z)_{+}$terms

$$
\tau=\frac{Q^{2}}{S}
$$

Next-to-Leading + Next-to-Leading Logarithm Order Calculation

An NLO calculation
gathers the $\mathcal{O}\left(\alpha_{S}\right)$
terms

ㄴ

LO 1
NLO $\alpha_{s} \log (N)^{2}$ $\alpha_{S} \log (N)$

NNLO $\quad \alpha_{S}^{2} \log (N)^{4} \quad \alpha_{S}^{2}\left(\log (N)^{2}, \log (N)^{3}\right)$

NkLo
$\alpha_{S}^{k} \log (N)^{2 k} \quad \alpha_{S}^{k}\left(\log (N)^{2 k-1} \log (N)^{2 k-2}\right)$
$\ldots \alpha_{S}^{k} \log (N)^{2 k-2 p}+\ldots$

Next-to-Leading + Next-to-Leading Logarithm Order Calculation

Add the columns to the rows

	$\underline{\mathrm{LL}}$	$\underline{\text { NLL }}$	\ldots	$\underline{\text { NPLL }}$
LO	1	--	\ldots	--
NLO	$\alpha_{S} \log (N)^{2}$	$\alpha_{S} \log (N)$	\ldots	--
NNLO	$\alpha_{S}^{2} \log (N)^{4}$	$\alpha_{S}^{2}\left(\log (N)^{2}, \log (N)^{3}\right)$	\ldots	--
\ldots	\ldots	\ldots	\ldots	\ldots
Nk LO	$\alpha_{S}^{k} \log (N)^{2 k}$	$\alpha_{S}^{k}\left(\log (N)^{2 k-1}, \log (N)^{2 k-2}\right)$	\ldots	$\alpha_{S}^{k} \log (N)^{2 k-2 p}+\ldots$

Next-to-Leading + Next-to-Leading Logarithm

 Order Calculation\author{

- Subtract the matching
}

	$\underline{\mathrm{LL}}$	$\underline{\text { NLL }}$	\ldots	$\underline{\text { NPLL }}$
LO	1	--	\ldots	--
NLO	$\alpha_{S} \log (N)^{2}$	$\alpha_{S} \log (N)$	\ldots	--
NNLO	$\alpha_{S}^{2} \log (N)^{4}$	$\alpha_{S}^{2}\left(\log (N)^{2}, \log (N)^{3}\right)$	\ldots	--
\ldots	\ldots	\ldots	\ldots	\ldots
Nk LO	$\alpha_{S}^{k} \log (N)^{2 k}$	$\alpha_{S}^{k}\left(\log (N)^{2 k-1}, \log (N)^{2 k-2}\right)$	\ldots	$\alpha_{S}^{k} \log (N)^{2 k-2 p}+\cdots$

