

Charm production and hadronisation in ALICE

<u>B. Volkel</u> (on behalf of the ALICE collaboration)

19th International Conference on Hadron Spectroscopy and Structure Mexico City (remote) 26 July 2021

Factorisation theorem

Inclusive production of hadron h_c in proton-proton collisions at a centre-of-mass energy √s

Parton distribution functions (non-pert.)

Probability to find parton a/b with energy fraction x_i in proton i

Partonic cross section (pert.)

Cross section of inclusive production of parton c

Fragmentation fraction (non. pert)

Probability that parton c fragments into hadron $h_{\rm c}$ carrying $x_{\rm c}$ of the parton's energy

Factorisation theorem

Interest in hadron production and hadronisation mechanisms?!

- Charm guarks predominantly produced in hard interaction (in pp as well as in AA) \rightarrow abundance directly reflected by abundance of charm hadrons \rightarrow unique probes to study hadron production and
 - hadronisation mechanisms
- Test and enhance understanding of QCD as a whole
- Are hadronisation mechanisms universal across collision systems?

ALICE detector and charm baryon reconstruction

V0 detectors Triagering

Multiplicity estimation

Charm baryons decay close to the interaction vertex

- → reconstruct charm baryons from their 2 or 3 tracks in central barrel, $|\eta| < 0.8$
- \rightarrow suppress background contamination via decay topology and PID criteria

ALICE detector and charm baryon reconstruction

V0 detectors Triggering Multiplicity estimation

Inner Tracking System (ITS)

prim. and sec. vertex reconstruction tracking (standalone or with TPC/TRD/TOF) multiplicity estimation (2 innermost layers)

Time Of Flight (TOF) PID via time-of-flight measurement

Time Projection Chamber (TPC) tracking PID via dE/dx measurement

Charm baryons decay close to the interaction vertex

- → reconstruct charm baryons from their 2 or 3 tracks in central barrel, $|\eta| < 0.8$
- \rightarrow suppress background contamination via decay topology and PID criteria

	particles	under	study	
T	Т			

i	baryon	$m_{\rm inv}[{\rm GeV}/c^2]$	$c\tau[\mu\mathrm{m}]$	decay (BR $[\%]$)	
	$\Lambda_{ m c}^+$	≈ 2.286	≈ 60	$pK^{-}\pi^{+}$ (6.28), $pK_{S}^{0} \rightarrow p\pi^{+}\pi^{-}$ (1.1)	
	$\Sigma_{\rm c}^{0,++}$	≈ 2.454	-	$\Lambda_{\rm c}^+\pi^{-,+}~(\approx 100)$	
				(7.39 with only above Λ_c^+ decay channels)	
	$\Xi_{\rm c}^0$	≈ 2.468	≈ 136	$\Xi^{-}e^{+}\nu_{e}$ (1.8), $\Xi^{-}\pi^{+}$ (1.43)	
Ì	$\Xi_{\rm c}^+$	≈ 2.470	≈ 46	$\Xi^{-}2\pi^{+}$ (2.86)	
- 	$\Omega_{ m c}^0$	≈ 2.695	≈ 80	$\Omega^{-}\pi^{+}$ (0.51)	
				(from theoretical calculations)	

EPJC 80 (2020) 11, 1066

system	\sqrt{s} [TeV]	$N_{ m ev}$	$\mathcal{L}_{\mathrm{int}}$	baryon
pp	5.02	10^{9}	$19.5\mathrm{nb}^{-1}$	$\Lambda_{ m c}^+,\Xi_{ m c}^0$
pp	13	$1.9 \cdot 10^9$	$32\mathrm{nb}^{-1}$	$\Lambda_{\rm c}^+, \Sigma_{\rm c}^{0,++}, \Xi_{\rm c}^{0,+}, \Omega_{\rm c}^0$
p-Pb	5.02	$6 \cdot 10^8$	$287\mu\mathrm{b}^{-1}$	$\Lambda_{ m c}^+$

\wedge^{+}_{c} measurements in pp and p-Pb

Suggesting that (charm) hadronisation is not universal across collision systems

Pythia8 (Monash) and HERWIG7

hadronisation tuned to results obtained in e⁺e⁻ underestimates the data and does not reproduce the shape

• SHM(PDG)

hadronisation effectively described via statistical approach develops shape but underestimates the data at low and intermediate $p_{\rm T}$

• Catania

fragmentation + partonic coalescence compatible order of magnitude, slightly overestimating the data

• SHM(RQM)

augmented with excited baryon states from Relativistic Quark Model in agreement with data

• Pythia8 (CR Mode2)

colour reconnection beyond leading colour in agreement with data

- As of now, multiple differential measurements, also in intervals of multiplicity (here two are shown, highest and lowest)
- Deviation of e⁺e⁻-tuned prediction increases with multiplicity
- Pythia8 with CR Mode2 better approaches the measurements in both cases
- Data in the **low multiplicity** interval at lower *p*_T is still significantly above Pythia8 (Monash)

ALI-PREL-336442

Hadronisation dependent on multiplicity and somewhat complexity of the system? Peculiarity/impact of hadronisation mechanisms enhancing with multiplicity? Radial flow effects?

19th ICHSS - 26 July 2021 - B. Volkel

ALTCE

• Within uncertainties compatible ratio at 5.02 TeV and 7 TeV in pp

- p-Pb data has potentially larger shift in p_{T}
- First measurement of Λ^+_c in pp down to $p_T=0$

19th ICHSS - 26 July 2021 - B. Volkel

- D-meson *R*_{pPb} compatible with unity
- Λ⁺_c suppressed at low p_T and enhanced at higher p_T in p-Pb compared to pp
 → due to increasing multiplicity?
 → flow effects?

- POWHEG+Pythia6 with Cold Nuclear Matter effects underestimates the data for p_T > 4 GeV/c
- POWLANG (QGP in small systems) exhibits similar shape at lower p_T but underestimates the data at higher momenta

- D-meson *R*_{pPb} compatible with unity
- A⁺_c suppressed at low p_T and enhanced at higher p_T in p-Pb compared to pp
 → due to increasing multiplicity?
 → flow effects?

• D-meson ratios compatible within uncertainties comparing pp, p-Pb and Pb-Pb systems

Production measurements of $\sum_{c}^{0,++}$ (first time in hadronic collisions!)

- Similar observation as in the case of ∧⁺_c/D⁰
 → Pythia8 (Monash) significantly underestimates the data
- $p_{\rm T}$ shape of the ratio less pronounced compared to $\Lambda^+_{\rm c}/{\rm D}^0$
- Pythia (CR-BLC) develops shape and approaches the data at medium and larger p_{T}
- Good approximation by SHM (RQM) and Catania predictions as well as by coalescence model QCM

Production measurements of $\sum_{c}^{0,++}$ (first time in hadronic collisions!)

- Similar observation as in the case of Λ^+_c/D^0 \rightarrow Pythia8 (Monash) significantly underestimates the data
- p_T shape of the ratio less pronounced compared to Λ^+_c/D^0
- Pythia (CR-BLC) develops shape and approaches the data at medium and larger $p_{\rm T}$
- Good approximation by SHM (RQM) and Catania predictions as well as by coalescence model QCM

NEW production measurements of Ξ^+_c and Ξ^0_c

- *p*_T shape of ratios similar in shape compared to Λ⁺_c/D⁰
- This time, also colour reconnection is not capable of describing the data

Again: Suggesting non-universal hadronisation

- All predictions **but Catania** underpredict the data, in particular significantly at low $p_{\rm T}$
- Compatible ratios measured for $\Xi^{+}{}_{c}/D^{0}$ and $\Xi^{0}{}_{c}/D^{0}$ as measured at 13 TeV

ALICE

ALI-PREL-486632

- Measured baryon-to-meson ratio flat within uncertainties
- All predictions but Catania underpredict the $\Omega^{\circ}_{c}/D^{\circ}$ ratio

Theoretical prediction of BR($\Omega^{\circ}_{c} \rightarrow \Omega^{-}\pi^{+}$): EPJC 80 (2020) 11, 1066

> Again: Suggesting non-universal hadronisation

19th ICHSS - 26 July 2021 - B. Volkel

2.55 2.6

ALI-PREL-486622

2.7

19th ICHSS - 26 July 2021 - B. Volkel

2.65

2.75 2.8 2.85

 $M(\Omega^{\mp}\pi^{\pm})$ (GeV/ c^2)

- Measured baryon-to-meson ratio flat within uncertainties
- All predictions **but Catania** underpredict the Ω^{0}_{c}/D^{0} ratio

- Measured ratio flat within uncertainties
- All predictions **but Catania** undershoot the $\Omega^{\circ}_{c}/\Xi^{\circ}_{c}$ ratio

14

Charm fragmentation fractions (FF)

- First time accounting for charmed baryons in hadronic collisions (all in |y| < 0.5)
 - $\rightarrow \Xi^{\circ}_{c}$ contribution sizeable
 - $\rightarrow \Lambda^{*}_{\rm c}$ significantly differs from measurements in smaller systems
 - → decrease of D⁰ FF due to measurements of Λ^+_c/D^0 ratio
- D^{*+} feeds into D^0 and D^+ H_c $f(c \rightarrow H_c)$ [%]
 - D^0 39.1 ± 1.7(stat)^{+2.5}_{-3.7}(syst)
 - $D^+ 17.3 \pm 1.8 (stat)^{+1.7}_{-2.1} (syst)$
 - $D_s^+ ~~7.3 \pm 1.0 (stat)^{+1.9}_{-1.1} (syst)$
 - $\Lambda_c^+ ~~20.4 \pm 1.3 (stat)^{+1.6}_{-2.2} (syst)$
 - $\Xi_{c}^{0} = 8.0 \pm 1.2(\text{stat})^{+2.5}_{-2.4}(\text{syst})$
 - $D^{*+} \quad 15.5 \pm 1.2 (stat)^{+4.1}_{-1.9} (syst)$

New and updated charm cross section measurements

 $\left. \frac{\mathrm{d}\sigma^{\mathrm{c}\bar{\mathrm{c}}}}{\mathrm{d}y} \right|_{|y|<0.5} = 1165 \pm 44(\mathrm{stat})^{+134}_{-101}(\mathrm{syst})\,\mu\mathrm{b}$

- Use production cross sections of D⁰, D⁺, D⁺_s, Λ^+_{c} , Ξ^0_{c}
- First time accounting for charmed baryons in hadronic collisions
- Recomputed cross sections

 (at 2.76 and 7 TeV) increase by 40% due
 to measurement of charm
 baryon-to-meson ratios
- Measurements on upper edge of predictions (still compatible within uncertainties)
- Account for Ξ^+_c by scaling Ξ^0_c by factor of 2
- Add asymmetric errors to account for possible sizeable contribution of $\Omega^{\text{o}_{\text{c}}}$

19th ICHSS - 26 July 2021 - B. Volkel

ALTCE

Conclusions

- First measurements of production of $\sum_{c} O_{,++}$ and Ω_{c}^{0} in hadronic collisions
- First time taking charmed baryons (Λ^+_c and Ξ^0_c) into account for charm cross section calculation
- New and updated measurements of charm cross section and production measurement

Conclusions

- First measurements of production of $\sum_{c} O_{c}^{0,++}$ and Ω_{c}^{0} in hadronic collisions
- First time taking charmed baryons (Λ^+_c and Ξ^0_c) into account for charm cross section calculation
- New and updated measurements of charm cross section and production measurement
- Non-universality of charm-baryon hadronisation
 → Significant different fragmentation fractions measured in pp collisions at √s = 5.02 TeV wrt.
 measurements at e⁺e⁻ and e⁻p colliders
- Different model predictions
 - Pythia8 (CR-BLC) well describes Λ^+_c/D^0 ratio but fails to describe $\Xi_c^{0,+}/D^0$, Ω^0_c/D^0 and Ω^0_c/Ξ^0_c
 - SHM(RQM) yields overall good approximations but fails to describe $\Xi_c^{0,+}/D^0$
 - Catania (coalescence + fragmentation) is as of now able to describe ratios best across different baryons
- Future measurements down to $p_T = 0$ might show actual enhancement or could for instance reveal flow-like behaviour in pp collisions

BACKUP

Model predictions

- Pythia8: Comput. Phys. Commun. 178 (2008) 852-867
- Pythia8 (Monash): EPJC 74 (2014) 8, 3024
- Pythia8 (CR-BLC): JHEP 1508 (2015) 003
- Catania: arxiv:2012.12001
- QCM: EPJC 78 (2018) 4, 344
- SHM (RQM): PLB 795 (2019) 117-121
- POWHEG+Pythia6 (CNM): JHEP 03 (2016) 123,
- POWLANG: JHEP 09 (2007) 126, EPJC 77 (2017) 3, 163

Complementary material \wedge^+_c

Complementary material $\sum_{c}^{0,++}$

8

 $p_{_{\rm T}}$ (GeV/c)

6

Complementary material $\Xi_{c}^{0,+}$

± 2.1% lumi. unc. not shown

4

2

ALI-PUB-488167

0

19th ICHSS - 26 July 2021 - B. Volkel

10

Complementary material Ω^{0}_{c}

ALI-PREL-486627

Complementary material fragmentation functions

Comparison to Pythia8 CR-BLC and SHM

Complementary material charm cross section

- Theory comparisons
 - FONLL: JHEP 05 (1998) 007, JHEP 03 (2001) 006, JHEP 10 (2012) 137
 - NNLO: PRL 118 (2017) 12, 122001, EPJC 78 (2018) 5, 359, PRL 110 (2013) 252004