

XYZ Mesons

X(3872) - large isospin violation

Plethora of quarkonium-like states observed since 2003 which do not fit into conventional $\overline{q}q$ mesons in QCD.

g

N. Brambilla et al. [Physics Reports 873 (2020) 1-154]

XYZ in Photoproduction

None of the XYZ's have been observed in photon-induced reactions

Current dedicated photoproduction facilities (e.g. GlueX@JLab) too low in energy reach.

Ideal laboratory for spectroscopy

- Constrained kinematics \Rightarrow precise determination of production mechanism
- **Direct production** \Rightarrow eliminates contribution from triangle rescattering and FSI
- Phenomenology well understood
- Heavy quarkonium photoproduction studies at ep colliders demonstrated at HERA

Need a high luminosity, high energy collider!

ZEUS [Phys.Lett.B680:4-12,2009]

σ(γp→ľ(1S)p) (nb) 80 L

0.6

0.4

0.2

60

Electron-Hadron Facilities

High-luminosity polarized *ep* and *eA* collider to be built at Brookhaven National Lab (EIC).

Broad physics program — including **exotic spectroscopy in photoproduction** !

Proposed 2nd interaction region may even be optimized for high-luminosity, low-energy photoproduction.

Similar proposed collider in China (EicC).

Electron Injection Possible Line On-energy Ion Injector lectron Ring Injector Linac EIC Possible Polarized Detector Electron Source Possible Electron Injector (RCS) (Polarized) Ion Source Booste AGS

EIC White paper [arXiv:1212.1701]

EicC White paper [arXiv:2102.09222]

Exclusive XYZ results

JPAC [Phys. Rev. D 102, 114010 (2020)] EIC Yellow Report [arXiv:2103.05419]

Phenomenological predictions for all major XYZ mesons at near-threshold...

Exclusive XYZ results

JPAC [Phys. Rev. D 102, 114010 (2020)]

EIC Yellow Report [arXiv:2103.05419]

Phenomenological predictions for all major XYZ mesons at near-threshold... and high-energies.

Formalism used is applicable to exclusive XYZ (or other meson) photoproduction at other facilities!

Exclusive photoproduction

Recipe for an amplitude:

- 1. Identify relevant **exchanges**
- 2. Photon couplings fixed by observed decay widths and VMD
- 3. Bottom couplings from other reactions

Extensive use of effective Lagrangian methods for fixed-spin exchanges.

$$\langle \lambda_{\mathcal{Q}} \lambda'_{N} | T | \lambda_{\gamma} \lambda_{N} \rangle = \sum_{V, \mathcal{E}} \frac{e f_{V}}{m_{V}} \, \mathcal{T}^{\alpha_{1} \cdots \alpha_{j}}_{\lambda_{V} = \lambda_{\gamma}, \lambda_{\mathcal{Q}}} \, \mathcal{P}_{\alpha_{1} \cdots \alpha_{j}; \beta_{1} \cdots \beta_{j}} \, \mathcal{B}^{\beta_{1} \cdots \beta_{j}}_{\lambda_{N} \lambda'_{N}}$$

We then match to helicity amplitude expansion in exchange rest frame

$$\mathcal{T}_{\lambda_V,\lambda_Q}^{\alpha_1\dots\alpha_j} \mathcal{P}_{\alpha_1\dots\alpha_j,\beta_1\dots\beta_j} \mathcal{B}_{\lambda_N,\lambda_N'}^{\beta_1\dots\beta_j} \to T_{\mu_V\mu_Q}(t) d^j_{\mu\mu'}(\theta_t) B_{\mu_N,\mu_N'}(t)$$

At high-energies, exchanges Reggeize to conserve unitarity!

$$\left(\frac{4\,p(t)\,q(t)}{s_0}\right)^{j-M} \mathcal{N}^j_{\mu\mu'} \,\frac{d^j_{\mu\mu'}(\theta_t)}{\xi^{(t)}_{\mu\mu'}(s,t)} \,\frac{1}{t-m_{\mathcal{E}}^2} \longrightarrow -\alpha'\,\Gamma(j-\alpha(t))\left[\frac{1+\tau\,e^{-i\pi\alpha(t)}}{2}\right] \,\left(\frac{s}{s_0}\right)^{\alpha(t)-M}$$

QCD Theory or

Experiment

Photoproduction amplitudes may be constructed generically based on exchange-reaction theory.

jpacPhoto assembles JPAC photoproduction amplitudes in an object-oriented library for accessible use.

Inputs

QCD Theory or Experiment

Numerical couplings, form factors, masses

For the purposes of a unified amplitude framework, we assume the masses and widths of particles are known and coupling constants can be estimated.

Initial and final state particle content

Effective

Lagrangians

Regge physics

X(3872)	$ ho \ \omega$	$4.1^{+1.9}_{-1.1}$ $4.4^{+2.3}_{-1.3}$
$\chi_{c1}(1P)$		$\mathcal{B}(X \to J/\psi \mathcal{E}) (\%$
	$\phi \ J/\psi$	$(2.4 \pm 0.5) \times 10^{-3}$ 34.3 ± 1.0
	ω	$(6.8 \pm 0.8) \times 10^{-5}$
X	E	$\frac{\mathcal{B}(X \to \gamma \mathcal{E}) \ (\%)}{(2.16 \pm 0.17) \times 10^{-7}}$

Dynamics

QCD Theory or

Experiment

Kinematics entirely specified by the masses, spins, and quantum numbers of all particles.

Kinematics

Initial and final

state particle content

Effective

Lagrangians

Regge physics

Dynamics motivated by phenomenology of production mechanisms.

JPAC [Phys. Rev. D 102, 114010 (2020)]

Photoproduction facilities provide unique probes for helicity-dependent observables through polarized beams and/or targets.

Evaluating on a per-helicity-amplitude basis allows wide breadth of polarization observables to be calculated.

QCD Theory or

Experiment

JPAC [Phys. Rev. D 102, 114010 (2020)]

General framework

Object-oriented structure allows separation of common features of photoproduction processes. Specific processes incorporated as implementations of abstract structures.

Amplitudes

[github.com/dwinney/jpacPhoto]

Expandable library to be a one-stop shop for JPAC photoproduction amplitudes. Available amplitudes, so far, include:

- Baryon resonance (s-channel)
 - Pentaquarks, N*
- Pomeron exchange (t-channel) Y(4260), J/ψ , ψ (2S)
- (fixed-spin and reggeized) Charged pseudo-scalar meson exchange (t-channel) Z(3900)
- (fixed-spin and reggeized) Vector meson exchange (t-channel)
- Primakoff effect off nuclear target (t-channel)
- (fixed-spin) Dirac fermion exchange (u-channel)
- (fixed-spin) Rarita-Schwinger fermion exchange (u-channel)

Addition of arbitrarily many (interfering) amplitudes available as well.

Many amplitudes for up to spin-0 and 1 mesons and baryons resonances up to 5/2.

JPAC [Phys. Rev. D 102, 114010 (2020)]

JPAC [Phys. Rev. D 100, 034019 (2019)]

א (3872), **ג**כ1 ארץ אין אין אין אין אין א

Backwards production

Use in event generators

Object-oriented structure allows incorporation into event generators and simulation!

S. Joosten for J/ ψ -007 [APS GHP Meeting, 16 April 2021]

14

Box amplitudes

One-loop, box topologies appear as contributions to near-threshold photoproduction.

Reducible to integration over tree-level exchange diagrams!

Inclusive photoproduction

Extensions of the amplitude-based analysis and tools to include inclusive kinematics.

Inclusive kinematics is much less constrained than the exclusive production but boasts **higher cross-sections** at EIC energies.

Experimentally easier, less particles to reconstruct.

Phenomenologically, inclusive cross-sections are related to total cross-sections in the **Triple Regge** limit.

Differences between different productions enter primarily as rescaling of couplings \rightarrow inclusive photoproduction generically implementable similar to the existing exclusive library.

Thank you!