
ON THE SCALAR πK FORM FACTOR
BEYOND THE ELASTIC REGION
July 26, 2021 Leon von Detten IAS-4/IKP-3 HADRON2021

based on arXiv:2103.01966 in collaboration with F. Noël, C. Hanhart, M. Hoferichter and B. Kubis
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MOTIVATION
• Consistent description of πK needed for heavy meson decays, eg.
B→ J/ΨKπ

• High accuracy dispersive analysis of low energy phase shifts already exist
I Based on experimental data and constraints from chiral symmetry

• Problematic when extending to higher energies
I Inelastic channels become relevant
I Higher energetic resonances need to be included

• Formalism consistent with unitarity and analyticity which maps to low energy
amplitudes and incorporates resonances determining high energy dynamics
I Firstly introduced as parametrization of the pion vector form-factor

[Hanhart, 2012] and applied to ππ-scattering [Ropertz et al., 2018]
[1, Hanhart, 2012] [2]
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OMNÉS PROBLEM
• Dispersion theory: express function f (s) obeying unitarity and causality by

its imaginary part

disc f (s) = 2i Im f (s) f (s) =
1
π

∫ ∞
sth

dz
Im f (z)

z − s
• Consider f(s) to be a two particle amplitude with definite isospin and angular

momentum
I f(s) can be expressed by Watson’s theorem in elastic regime with

on-shell T-matrix T (s) and scattering phase shift δ(s)

Im f = T ∗σf → f (s) = |f (s)|eiδ(s)

I Solution f (s) = P(s)Ω(s) with polynomial P(s) ∈ R and Omnes-function
Ω(s)

Ω(s) = exp

(
s
π

∫ ∞
sth

dz
δ(z)

z(z − s)

)
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FORMALISM
• Implement unitarity and analyticity via Bethe-Salpeter equation

Tif = Vif + VimGmmTmf

I Vif : scattering potential between initial channel i and final channel f
I Gmm : loop function describing free propagation of particles in channel m

→ Vif ∈ R ∧ discGmm = 2iσm

• Separate scattering potential into two parts V = V0 + VR and thus
T = T0 + TR

I T0 calculated from elastic input phase δ0

I V0 not explicitly needed→ absorbed into T0

T0 = V0 + V0GT0 T0(s) =

(
[σ(s)(cotδ0(s)− i)]−1 0

0 0

)
I 2 channel setup including πK and η′K as ηK decouples
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FORMALISM
• Define vertex function Ω = 1 + T0G

I disc Ω = 2iT0
∗σΩ

I Coincides with discontinuity of Omnes function calculated from T0

ΩπK = exp

[
s
π

∫ ∞
sth

dz
δ0(z)

z(z − s)

]
Ω(s) =

(
ΩπK (s) 0

0 1

)

• Use TR = ΩtRΩT to obtain Bethe-Salpeter like equation for tR

tR = VR + VR(GΩ)tR

tR
=

VR
+ G Ω

VR tR

I Selfenergy Σ = GΩ incorporates effects of T0 in order to conserve
unitarity

Member of the Helmholtz Association July 26, 2021 Slide 5



FORMALISM
• Define vertex function Ω = 1 + T0G

I disc Ω = 2iT0
∗σΩ

I Coincides with discontinuity of Omnes function calculated from T0

ΩπK = exp

[
s
π

∫ ∞
sth

dz
δ0(z)

z(z − s)

]
Ω(s) =

(
ΩπK (s) 0

0 1

)

• Use TR = ΩtRΩT to obtain Bethe-Salpeter like equation for tR

tR = VR + VR(GΩ)tR

tR
=

VR
+ G Ω

VR tR

I Selfenergy Σ = GΩ incorporates effects of T0 in order to conserve
unitarity

Member of the Helmholtz Association July 26, 2021 Slide 5



FORMALISM
• Define self energy Σ = GΩ

I disc Σ = 2iΩ†σΩ

I Express Σ as a once-subtracted dispersion integral

Σ(s) =
s

2πi

∫ ∞
sth

dz
disc Σ(z)

z(z − s)
Σ(s) =

(
ΣπK (s) 0

0 Ση′K (s)

)

• General potential with coupling constants gi ,gj given by

V̄R(s)ij =
∑

r

g(r)
i

1
s −m2

r
g(r)

j

I Subtract potential at some point s0 to reduce its impact at low energies

VR(s)if = V̄R(s)ij − V̄R(s0)ij = gi
s − s0

(s −m2
r )(s0 −m2

r )
gj
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FORMALISM
• Expression for T-matrix

T = T0 + Ω [1− VRΣ]−1 VRΩT

I T0 covers effects of K ∗0 (700)
I TR explicitly incorporates K ∗0 (1430),K ∗0 (1950)
I 6 free parameters: 4 couplings constants and 2 resonance masses
• L = 0 partial wave measured in combination of I = 1⁄2 and I = 3⁄2

T = T 1⁄2 + T 3⁄2/2

• Results fixing low energy behaviour taken from [Pelaez and Rodas, 2016]
I Phase must converge to multiple of π to ensure proper high energy

behaviour of Omnes function
I I = 3⁄2 : purly elastic up to 1.8GeV, no resonances present
I I = 1⁄2 : reduced formalism without K ∗0 (1430/1950)
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FIT TO PHASE AND MODULUS
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• Model reproduces data up to
2.3GeV

• Fixed s0 = (mK + mη)2

I minimizes TR at low energies

• Fit to Aston et al.
χ2/d.o.f. = 370/112 ≈ 3.5

• Large incompatibilities
between the two data sets

I Underestimated systematic
uncertainties

• Cover πK phase space in
I τ → Kπντ
I B→ J/ΨKπ
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PARAMETRIZATION OF THE FORM FACTOR
• Calculate form factor Γ with correct analytic structure, containing

information of both phase and modulus of the underlying T-matrix

Γ = M + T G M

Γi = Ωim [1− VRΣ]−1
mn Mn, Mi = ci −

∑
r

gr
i

s − s0

(s −m2
r )(s0 −m2

r )
αr

I Couplings gr
i and resonance masses mr fixed by previous fit

I Normalization ci and resonance coupling to source term αr are free
parameters

I for πK : Ward identity implicitly fixes c(0)
πK = 1

U(3) ChPT at leding order fixes c(0)
η′K =

√
3
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SCALAR FORM FACTOR
scalar form factor resulting from fit to πK invariant mass spectrum obtained
from τ → KSπ

−ντ decays by Belle [Epifanov et al., 2007]
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I correct phase motion in elastic regime by construction
I Callan-Treiman low energy theorem fulfilled up to at least 0.5%

[5]
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POLE EXTRACTION
• Breit-Wigner parameterization model- and reaction-dependent

I violate unitarity for overlapping resonances
I problematic for broad or near-threshold resonances

• Information of a resonance encoded in its pole
I mass MR and width ΓR from pole position

√
sR = MR − i ΓR

2

I coupling constant g̃R
j from residue Rij = − lims→sR Tij → g̃R

j = Rij/
√
Rii

I BRR→i = ΓR→i/Γtot. from partial width ΓR→i = |g̃R
i |2ρ(MR

2)/MR

I coupling CR
us to s̄γµu current from residue lims→sR f0 ∝ g̃R

i CR
us

Convention from PDG resonance review [P.A. Zyla et al., 2020]

• T0 has complicated analytic structure due to left-hand cuts
I Use Padé approximants to extract resonance properties
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PADÉ APPROXIMANTS

PN
1 (s, s0) =

∑N
n=0 a(N)

n (s − s(N)
0 )n

1 + b(N)(s − s(N)
0 )

, ∆
(N)
sys =

∣∣∣∣√s(N)
R −

√
s(N−1)

R

∣∣∣∣
I fit PN

1 (s, s0) to T-matrix and form factor
I choose s(N)

0 that minimizes ∆
(N)
sys for each N
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PADÉ APPROXIMANTS
• K ∗0 (1430) located in close proximity to the Kη′ threshold

I use conformal variable ω(s) to improve convergence of PN
1 (s, s0)

ω(s) =

√
s − sth

1 −
√

sth
2 − s√

s − sth
1 +

√
sth

2 − s
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CONCLUSION

• Applied new formalism consistent with unitarity and analyticity for
πK scattering and production
I Low energy regime fixed by input phase
I High energy dynamics determined by resonances

• Model able to reproduce phase and modulus data up to 2.3GeV including
the K ∗0 (700),K ∗0 (1430) and K ∗0 (1950) resonances
I extracted pole using Padé approximants:√

sK∗0 (1430) = [1408(48)− i 180(48)]MeV, BRK∗0 (1430)→πK = 0.87(12)√
sK∗0 (1950) = [1863(12)− i 136(20)]MeV, BRK∗0 (1950)→πK = 0.70(8)

• Reproduce scalar part of πK invariant mass spectrum in τ → Kπντ
I improved estimate for BRτ→K∗0 (1430)ντ < 1.6× 10−4

(at 95% confidence level)

I CP asymmetry generated by tensor operator Aτ,BSM
CP = −0.034(14) Im cT
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PELAEZ AND RODAS PARAMETERIZATION

t 1⁄2
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INPUT PHASE
• Results fixing low energy behaviour taken from [Pelaez et al., 2016]

I I = 1⁄2 : reduced formalism with pure elastic phase without resonance
contributions

0.6 0.8 1.0 1.2 1.4 1.6 1.8
s  in GeV

0.0

0.5

1.0

1.5

2.0

2.5

3.0

K K ′

inelastic
elastic
elastic (no res.)

1.0 1.5 2.0 2.5 3.0
s  in GeV

0.0

0.5

1.0

1.5

2.0

2.5

3.0 T = 0
T = 0.5
T = 1

I Phase must converge to multiple of π to ensure proper high energy
behaviour of Omnes function

I Continuation matched at
√

sm = 1.5GeV with additional tuning
parameter T

[6]
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INPUT PHASE
• I = 3⁄2 : purly elastic up to 1.8GeV

I T 3⁄2
0 directly calculated from phase

I no resonances present in this channel (exotic quantum numbers)
→ phase continued to 0 and TR = 0
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I original phase taken up to
√

sm = 1.8GeV to conserve its prominent
structure
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INCLUSION OF ηK -CHANNEL
I Explicit inclusion of ηK -channel statistically insignificant
I Check relative difference between 2-channel formalism (πK , η′K ) and

3-channel formalism (πK , ηK , η′K )
∆δ

δ
=

arg(T2c)− arg(T3c)

arg(T2c)

∆|T |
|T |

=
mod(T2c)−mod(T3c)
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I Fit indicates vanishing couplings of resonances to the ηK -channel
πK -channel mostly elastic up to 1.6GeV→ ηK -channel decouples
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ELASTICITY

ηπK = mod(1 + 2iσπK TπK )

I Elasticity of new model compatible with results from [Pelaez et al., 2016]
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FIT TO τ -DECAY SPECTRUM

I τ → KSπ
−ντ differential decay rate

dΓ

d
√

s
=

cΓ

s

(
1− s

m2
τ

)2(
1 + 2

s
m2
τ

)
qπK

(
q2
πK |̄f+|2 +

3∆2
πK

4s(1 + 2 s
m2

τ
)
|̄f0|2

)

I defining matrix elements

〈K̄ 0(pK )π−(pπ)|s̄γµu|0〉 = (pK − pπ)µf+(s) + (pK + pπ)µf−(s) (1)

〈K̄ 0(pK )π−(pπ)|s̄u|0〉 =
∆πK

ms −mu
f0(s) , (2)
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τ -DECAY SPECTRUM
• πK invariant mass spectrum extracted from τ → Ksπ

−ντ decays by Belle
[Epifanov et al., 2007]
I Parameterized in terms of scalar FS and vector FV form factor

dΓ

d
√

s
∝ 1

s

(
1− s

m2
τ

)(
1 + 2

s
m2
τ

)
P

[
P2|FV |2 +

3(m2
K −m2

π)2

4s(1 + 2 s
m2

τ
)
|FS|2

]
I Form factors of Belle based on addition of Breit-Wigners, thus violating

unitarity

FS
Belle = κ

s
M2

K∗0 (700)

BWK∗0 (700) + γ
s

M2
K∗0 (1430)

BWK∗0 (1430)

FV
Belle =

1
1 + β + χ

[
BWK∗(892) + βBWK∗(1410) + χBWK∗(1680)

]
I κ ∈ R γ, β, χ ∈ C free parameters

[5]
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FIRST RIEMANN-SHEET
I T0 only contains information of the input phase on the real axis
→ no analytic continuation to the complex plane
→ no unphysical poles by construction

I Can check TR for anomalous structures

I Extract pole positions via Padé-approximations→ to be done
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τ -DECAY SPECTRUM
I τ → KSπ

−ντ decay spectrum meassured by Belle [Epifanov et al., 2007]
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I use new formalism to calculate scalar form factor f0 and RChPT to model

vector form factor f+
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