

ON THE SCALAR πK FORM FACTOR BEYOND THE ELASTIC REGION

July 26, 2021 | Leon von Detten | IAS-4/IKP-3
HADRON2021
based on arXiv:2103.01966 in collaboration with F. Noël, C. Hanhart, M. Hoferichter and B. Kubis

TABLE OF CONTENTS

Motivation

Formalism

Fit Results

Pole Extraction

Conclusion

MOTIVATION

- Consistent description of πK needed for heavy meson decays, eg.
$B \rightarrow J / \Psi K \pi$
- High accuracy dispersive analysis of low energy phase shifts already exist
- Based on experimental data and constraints from chiral symmetry
- Problematic when extending to higher energies
- Inelastic channels become relevant
- Higher energetic resonances need to be included
- Formalism consistent with unitarity and analyticity which maps to low energy amplitudes and incorporates resonances determining high energy dynamics
- Firstly introduced as parametrization of the pion vector form-factor [Hanhart, 2012] and applied to $\pi \pi$-scattering [Ropertz et al., 2018]

OMNÉS PROBLEM

- Dispersion theory: express function $f(s)$ obeying unitarity and causality by its imaginary part

$$
\operatorname{disc} f(s)=2 i \operatorname{lm} f(s) \quad f(s)=\frac{1}{\pi} \int_{s_{\mathrm{i}}}^{\infty} \mathrm{d} z \frac{\operatorname{lm} f(z)}{z-s}
$$

- Consider $\mathrm{f}(\mathrm{s})$ to be a two particle amplitude with definite isospin and angular momentum
- $\mathrm{f}(\mathrm{s})$ can be expressed by Watson's theorem in elastic regime with on-shell T-matrix $T(s)$ and scattering phase shift $\delta(s)$

$$
\operatorname{Im} f=T^{*} \sigma f \quad \rightarrow \quad f(s)=|f(s)| e^{i \delta(s)}
$$

- Solution $f(s)=P(s) \Omega(s)$ with polynomial $P(s) \in \mathbb{R}$ and Omnes-function $\Omega(s)$

$$
\Omega(s)=\exp \left(\frac{s}{\pi} \int_{s_{\text {in }}}^{\infty} \mathrm{d} z \frac{\delta(z)}{z(z-s)}\right)
$$

FORMALISM

- Implement unitarity and analyticity via Bethe-Salpeter equation

$$
T_{i f}=V_{i f}+V_{i m} G_{m m} T_{m f}
$$

- $V_{i f}$: scattering potential between initial channel i and final channel f
- $G_{m m}$: loop function describing free propagation of particles in channel m $\rightarrow V_{i f} \in \mathbb{R} \wedge \operatorname{disc} G_{m m}=2 i \sigma_{m}$

FORMALISM

- Implement unitarity and analyticity via Bethe-Salpeter equation

$$
T_{i f}=V_{i f}+V_{i m} G_{m m} T_{m f}
$$

- $V_{i f}$: scattering potential between initial channel i and final channel f
- $G_{m m}$: loop function describing free propagation of particles in channel m

$$
\rightarrow V_{i f} \in \mathbb{R} \wedge \operatorname{disc} G_{m m}=2 i \sigma_{m}
$$

- Separate scattering potential into two parts $V=V_{0}+V_{R}$ and thus $T=T_{0}+T_{\mathrm{R}}$
- T_{0} calculated from elastic input phase δ_{0}
- V_{0} not explicitly needed \rightarrow absorbed into T_{0}

$$
T_{0}=V_{0}+V_{0} G T_{0} \quad T_{0}(s)=\left(\begin{array}{cc}
{\left[\sigma(s)\left(\cot \delta_{0}(s)-i\right)\right]^{-1}} & 0 \\
0 & 0
\end{array}\right)
$$

- 2 channel setup including πK and $\eta^{\prime} K$ as ηK decouples

FORMALISM

- Define vertex function $\Omega=\mathbb{1}+T_{0} G$
- $\operatorname{disc} \Omega=2 i T_{0}{ }^{*} \sigma \Omega$
- Coincides with discontinuity of Omnes function calculated from T_{0}

$$
\Omega_{\pi K}=\exp \left[\frac{s}{\pi} \int_{s_{\text {th }}}^{\infty} \mathrm{d} z \frac{\delta_{0}(z)}{z(z-s)}\right] \quad \Omega(s)=\left(\begin{array}{cc}
\Omega_{\pi K}(s) & 0 \\
0 & 1
\end{array}\right)
$$

FORMALISM

- Define vertex function $\Omega=\mathbb{1}+T_{0} G$
- $\operatorname{disc} \Omega=2 i T_{0}{ }^{*} \sigma \Omega$
- Coincides with discontinuity of Omnes function calculated from T_{0}

$$
\Omega_{\pi K}=\exp \left[\frac{s}{\pi} \int_{s_{\text {th }}}^{\infty} \mathrm{d} z \frac{\delta_{0}(z)}{z(z-s)}\right] \quad \Omega(s)=\left(\begin{array}{cc}
\Omega_{\pi K}(s) & 0 \\
0 & 1
\end{array}\right)
$$

- Use $T_{\mathrm{R}}=\Omega t_{\mathrm{R}} \Omega^{\top}$ to obtain Bethe-Salpeter like equation for t_{R}

$$
t_{R}=V_{R}+V_{R}(G \Omega) t_{R}
$$

- Selfenergy $\Sigma=G \Omega$ incorporates effects of T_{0} in order to conserve unitarity

FORMALISM

- Define self energy $\Sigma=G \Omega$
- $\operatorname{disc} \Sigma=2 i \Omega^{\dagger} \sigma \Omega$
- Express Σ as a once-subtracted dispersion integral

$$
\Sigma(s)=\frac{s}{2 \pi i} \int_{s_{\text {th }}}^{\infty} \mathrm{d} z \frac{\operatorname{disc} \Sigma(z)}{z(z-s)} \quad \Sigma(s)=\left(\begin{array}{cc}
\Sigma_{\pi K}(s) & 0 \\
0 & \Sigma_{\eta^{\prime} K}(s)
\end{array}\right)
$$

FORMALISM

- Define self energy $\Sigma=G \Omega$
- $\operatorname{disc} \Sigma=2 i \Omega^{\dagger} \sigma \Omega$
- Express Σ as a once-subtracted dispersion integral

$$
\Sigma(s)=\frac{s}{2 \pi i} \int_{s_{\text {th }}}^{\infty} \mathrm{d} z \frac{\operatorname{disc} \Sigma(z)}{z(z-s)} \quad \Sigma(s)=\left(\begin{array}{cc}
\Sigma_{\pi K}(s) & 0 \\
0 & \Sigma_{\eta^{\prime} K}(s)
\end{array}\right)
$$

- General potential with coupling constants g_{i}, g_{j} given by

$$
\bar{V}_{\mathrm{R}}(s)_{i j}=\sum_{r} g_{i}^{(r)} \frac{1}{s-m_{r}^{2}} g_{j}^{(r)}
$$

- Subtract potential at some point s_{0} to reduce its impact at low energies

$$
V_{\mathrm{R}}(s)_{i f}=\bar{V}_{\mathrm{R}}(s)_{i j}-\bar{V}_{\mathrm{R}}\left(s_{0}\right)_{i j}=g_{i} \frac{s-s_{0}}{\left(s-m_{r}^{2}\right)\left(s_{0}-m_{r}^{2}\right)} g_{j}
$$

FORMALISM

- Expression for T-matrix

$$
T=T_{0}+\Omega\left[\mathbb{1}-V_{R} \Sigma\right]^{-1} V_{R} \Omega^{\top}
$$

- T_{0} covers effects of $K_{0}^{*}(700)$
- T_{R} explicitly incorporates $K_{0}^{*}(1430), K_{0}^{*}(1950)$
- 6 free parameters: 4 couplings constants and 2 resonance masses
- $L=0$ partial wave measured in combination of $I=1 / 2$ and $I=3 / 2$

$$
T=T^{1 / 2}+T^{3 / 2} / 2
$$

- Results fixing low energy behaviour taken from [Pelaez and Rodas, 2016]
- Phase must converge to multiple of π to ensure proper high energy behaviour of Omnes function
- $I=3 / 2$: purly elastic up to 1.8 GeV , no resonances present
- $I=1 / 2$: reduced formalism without $K_{0}^{*}(1430 / 1950)$

JÜLICH
Forschungszentrum

FIT TO PHASE AND MODULUS

data: [Aston et al., 1988],[Estabrooks et al., 1978]

- Model reproduces data up to 2.3 GeV
- Fixed $s_{0}=\left(m_{\kappa}+m_{\eta}\right)^{2}$
- minimizes T_{R} at low energies
- Fit to Aston et al.

$$
\chi^{2} / \text { d.o.f. }=370 / 112 \approx 3.5
$$

- Large incompatibilities between the two data sets
- Underestimated systematic uncertainties
- Cover πK phase space in
- $\tau \rightarrow \mathrm{K} \pi \nu_{\tau}$
- $\mathrm{B} \rightarrow \mathrm{J} / \Psi \mathrm{K} \pi$

PARAMETRIZATION OF THE FORM FACTOR

- Calculate form factor Γ with correct analytic structure, containing information of both phase and modulus of the underlying T-matrix

$$
\Gamma_{i}=\Omega_{i m}\left[\mathbb{1}-V_{R} \Sigma\right]_{m n}^{-1} M_{n}, \quad M_{i}=c_{i}-\sum_{r} g_{i}^{r} \frac{s-s_{0}}{\left(s-m_{r}^{2}\right)\left(s_{0}-m_{r}^{2}\right)} \alpha_{r}
$$

- Couplings g_{i}^{r} and resonance masses m_{r} fixed by previous fit
- Normalization c_{i} and resonance coupling to source term α_{r} are free parameters
- for πK : Ward identity implicitly fixes $c_{\pi K}^{(0)}=1$
$U(3) \mathrm{ChPT}$ at leding order fixes $c_{\eta^{\prime} K}^{(0)}=\sqrt{3}$

SCALAR FORM FACTOR

scalar form factor resulting from fit to πK invariant mass spectrum obtained from $\tau \rightarrow K_{S} \pi^{-} \nu_{\tau}$ decays by Belle [Epifanov et al., 2007]

- correct phase motion in elastic regime by construction
- Callan-Treiman low energy theorem fulfilled up to at least 0.5\%

POLE EXTRACTION

- Breit-Wigner parameterization model- and reaction-dependent
- violate unitarity for overlapping resonances
- problematic for broad or near-threshold resonances
- Information of a resonance encoded in its pole
- mass M_{R} and width Γ_{R} from pole position $\sqrt{s_{\mathrm{R}}}=M_{\mathrm{R}}-i \frac{\Gamma_{\mathrm{R}}}{2}$
- coupling constant \tilde{g}_{j}^{R} from residue $\mathcal{R}_{i j}=-\lim _{s \rightarrow s_{R}} T_{i j} \rightarrow \tilde{g}_{j}^{\mathrm{R}}=\mathcal{R}_{i j} / \sqrt{\mathcal{R}_{i i}}$
- $\mathrm{BR}_{\mathrm{R} \rightarrow i}=\Gamma_{\mathrm{R} \rightarrow i} / \Gamma_{\text {tot. }}$ from partial width $\Gamma_{\mathrm{R} \rightarrow i}=\left|\tilde{g}_{i}^{\mathrm{R}}\right|^{2} \rho\left(M_{\mathrm{R}}{ }^{2}\right) / M_{\mathrm{R}}$
- coupling $C_{u s}^{R}$ to $\bar{s} \gamma^{\mu} u$ current from residue $\lim _{s \rightarrow s_{R}} f_{0} \propto \tilde{g}_{i}^{R} C_{u s}^{R}$

Convention from PDG resonance review [P.A. Zyla et al., 2020]

POLE EXTRACTION

- Breit-Wigner parameterization model- and reaction-dependent
- violate unitarity for overlapping resonances
- problematic for broad or near-threshold resonances
- Information of a resonance encoded in its pole
- mass M_{R} and width Γ_{R} from pole position $\sqrt{s_{\mathrm{R}}}=M_{\mathrm{R}}-i \frac{\Gamma_{\mathrm{R}}}{2}$
- coupling constant \tilde{g}_{j}^{R} from residue $\mathcal{R}_{i j}=-\lim _{s \rightarrow s_{R}} T_{i j} \rightarrow \tilde{g}_{j}^{\mathrm{R}}=\mathcal{R}_{i j} / \sqrt{\mathcal{R}_{i i}}$
- $\mathrm{BR}_{\mathrm{R} \rightarrow i}=\Gamma_{\mathrm{R} \rightarrow i} / \Gamma_{\text {tot. }}$ from partial width $\Gamma_{\mathrm{R} \rightarrow i}=\left|\tilde{g}_{i}^{\mathrm{R}}\right|^{2} \rho\left(M_{\mathrm{R}}{ }^{2}\right) / M_{\mathrm{R}}$
- coupling $C_{u s}^{R}$ to $\bar{s} \gamma^{\mu} u$ current from residue $\lim _{s \rightarrow s_{R}} f_{0} \propto \tilde{g}_{i}^{R} C_{u s}^{R}$

Convention from PDG resonance review [P.A. Zyla et al., 2020]

- T_{0} has complicated analytic structure due to left-hand cuts
- Use Padé approximants to extract resonance properties

PADÉ APPROXIMANTS

$$
P_{1}^{N}\left(s, s_{0}\right)=\frac{\sum_{n=0}^{N} a_{n}^{(N)}\left(s-s_{0}^{(N)}\right)^{n}}{1+b^{(N)}\left(s-s_{0}^{(N)}\right)}, \quad \Delta_{\mathrm{sys}}^{(N)}=\left|\sqrt{s_{\mathrm{R}}^{(N)}}-\sqrt{s_{\mathrm{R}}^{(N-1)}}\right|
$$

- fit $P_{1}^{N}(s, s 0)$ to T-matrix and form factor
- choose $s_{0}^{(N)}$ that minimizes $\Delta_{\text {sys }}^{(N)}$ for each N

PADÉ APPROXIMANTS

$$
P_{1}^{N}\left(s, s_{0}\right)=\frac{\sum_{n=0}^{N} a_{n}^{(N)}\left(s-s_{0}^{(N)}\right)^{n}}{1+b^{(N)}\left(s-s_{0}^{(N)}\right)}, \quad \Delta_{\mathrm{sys}}^{(N)}=\left|\sqrt{s_{\mathrm{R}}^{(N)}}-\sqrt{s_{\mathrm{R}}^{(N-1)}}\right|
$$

- fit $P_{1}^{N}(s, s 0)$ to T-matrix and form factor
- choose $s_{0}^{(N)}$ that minimizes $\Delta_{\text {sys }}^{(N)}$ for each N

PADÉ APPROXIMANTS

- $K_{0}^{*}(1430)$ located in close proximity to the $K \eta^{\prime}$ threshold
- use conformal variable $\omega(s)$ to improve convergence of $P_{1}^{N}\left(s, s_{0}\right)$

$$
\omega(s)=\frac{\sqrt{s-s_{1}^{\mathrm{th}}}-\sqrt{s_{2}^{\mathrm{th}}-s}}{\sqrt{s-s_{1}^{\mathrm{th}}}+\sqrt{s_{2}^{\mathrm{th}}-s}}
$$

Zhou and Zheng (2006) Zheng et al. (2004) Aitala et al. (2002) Anisovich and Sarantsev (1997) Aston et al. (1988)

CONCLUSION

- Applied new formalism consistent with unitarity and analyticity for πK scattering and production
- Low energy regime fixed by input phase
- High energy dynamics determined by resonances
- Model able to reproduce phase and modulus data up to 2.3 GeV including the $K_{0}^{*}(700), K_{0}^{*}(1430)$ and $K_{0}^{*}(1950)$ resonances
- extracted pole using Padé approximants:

$$
\begin{array}{ll}
\sqrt{s_{K_{0}^{*}(1430)}}=[1408(48)-i 180(48)] \mathrm{MeV}, & \mathrm{BR}_{{K_{0}}_{*}(1430) \rightarrow \pi K}=0.87(12) \\
\sqrt{s_{K_{0}^{*}(1950)}}=[1863(12)-i 136(20)] \mathrm{MeV}, & \mathrm{BR}_{K_{0}^{*}(1950) \rightarrow \pi K}=0.70(8)
\end{array}
$$

- Reproduce scalar part of πK invariant mass spectrum in $\tau \rightarrow K \pi \nu_{\tau}$
- improved estimate for $\mathrm{BR}_{\tau \rightarrow K_{0}^{*}(1430) \nu_{\tau}}<1.6 \times 10^{-4}{ }_{\text {(at } 95 \%}$ confidence eveve)
- $C P$ asymmetry generated by tensor operator $A_{C P}^{\tau, \mathrm{BSM}}=-0.034(14) \operatorname{Im} c_{T}$

LITERATUR I

[1] C. Hanhart. "A New Parameterization for the Pion Vector Form Factor". In: Phys. Lett. B 715 (2012), pp. 170-177.
DOI: 10.1016/j.physletb.2012.07.038. arXiv: 1203.6839 [hep-ph].
[2] S. Ropertz, C. Hanhart, and B. Kubis.
"A new parametrization for the scalar pion form factors".
In: Eur. Phys. J. C 78.12 (2018), p. 1000.
DOI: 10.1140/epjc/s10052-018-6416-6. arXiv: 1809.06867 [hep-ph].
[3] D. Aston et al. "A Study of K- pi+ Scattering in the Reaction K-p - i Kpi+ n at 11-GeV/c". In: Nucl. Phys. B 296 (1988), pp. 493-526. DOI: 10.1016/0550-3213(88)90028-4.
[4] P. Estabrooks et al. "Study of K pi Scattering Using the Reactions K+- p -i K+- pi+ n and K+- p-i K+- pi- Delta++ at 13-GeV/c".
In: Nucl. Phys. B 133 (1978), pp. 490-524.
DOI: 10.1016/0550-3213(78)90238-9.

LITERATUR II

[5] D. Epifanov et al. "Study of tau- - ¿ K(S) pi- nu(tau) decay at Belle".
In: Phys. Lett. B 654 (2007), pp. 65-73.

```
DOI: 10.1016/j.physletb.2007.08.045. arXiv: 0706.2231 [hep-ex].
```

[6] J. Pelaez and A. Rodas. "Pion-kaon scattering amplitude constrained with forward dispersion relations up to 1.6 GeV ".
In: Phys. Rev. D 93.7 (2016), p. 074025.
DOI: 10.1103/PhysRevD.93.074025. arXiv: 1602.08404 [hep-ph].

PELAEZ AND RODAS PARAMETERIZATION

$$
\begin{gathered}
t_{0}^{1 / 2}=\frac{S_{0}^{b} S_{1}^{r} S_{2}^{r}}{2 i \sigma} \\
S_{0}^{b}=\exp \left(2 i i_{\eta K}\left(\phi_{0}+\phi_{1} p_{\eta K}^{2}\right)\right)
\end{gathered}
$$

INPUT PHASE

- Results fixing low energy behaviour taken from [Pelaez et al., 2016]
- $I=1 / 2$: reduced formalism with pure elastic phase without resonance contributions

- Phase must converge to multiple of π to ensure proper high energy behaviour of Omnes function
- Continuation matched at $\sqrt{s_{\mathrm{m}}}=1.5 \mathrm{GeV}$ with additional tuning parameter T

INPUT PHASE

- $I=3 / 2$: purly elastic up to 1.8 GeV
- $T_{0}^{3 / 2}$ directly calculated from phase
- no resonances present in this channel (exotic quantum numbers) \rightarrow phase continued to 0 and $T_{R}=0$

- original phase taken up to $\sqrt{s_{\mathrm{m}}}=1.8 \mathrm{GeV}$ to conserve its prominent structure

INCLUSION OF $\eta K-C H A N N E L$

- Explicit inclusion of ηK-channel statistically insignificant
- Check relative difference between 2-channel formalism ($\pi K, \eta^{\prime} K$) and 3-channel formalism ($\pi K, \eta K, \eta^{\prime} K$)

$$
\frac{\Delta \delta}{\delta}=\frac{\arg \left(T_{2 c}\right)-\arg \left(T_{3 c}\right)}{\arg \left(T_{2 c}\right)} \quad \frac{\Delta|T|}{|T|}=\frac{\bmod \left(T_{2 c}\right)-\bmod \left(T_{3 c}\right)}{\bmod \left(T_{2 c}\right)}
$$

- Fit indicates vanishing couplings of resonances to the ηK-channel πK-channel mostly elastic up to $1.6 \mathrm{GeV} \rightarrow \eta K$-channel decouples

ELASTICITY

$$
\eta_{\pi K}=\bmod \left(1+2 i \sigma_{\pi K} T_{\pi K}\right)
$$

- Elasticity of new model compatible with results from [Pelaez et al., 2016]

FIT TO τ-DECAY SPECTRUM

- $\tau \rightarrow K_{S} \pi^{-} \nu_{\tau}$ differential decay rate

$$
\frac{\mathrm{d} \Gamma}{\mathrm{~d} \sqrt{s}}=\frac{c_{\Gamma}}{s}\left(1-\frac{s}{m_{\tau}^{2}}\right)^{2}\left(1+2 \frac{s}{m_{\tau}^{2}}\right) q_{\pi K}\left(q_{\pi K}^{2}\left|\bar{f}_{+}\right|^{2}+\frac{3 \Delta_{\pi K}^{2}}{4 s\left(1+2 \frac{s}{m_{\tau}^{2}}\right)}\left|\bar{f}_{\mathrm{T}}\right|^{2}\right)
$$

- defining matrix elements

$$
\begin{align*}
\left\langle\bar{K}^{0}\left(p_{K}\right) \pi^{-}\left(p_{\pi}\right)\right| \bar{s} \gamma^{\mu} u|0\rangle & =\left(p_{K}-p_{\pi}\right)^{\mu} f_{+}(s)+\left(p_{K}+p_{\pi}\right)^{\mu} f_{-}(s) \tag{1}\\
\left\langle\bar{K}^{0}\left(p_{K}\right) \pi^{-}\left(p_{\pi}\right)\right| \bar{s} u|0\rangle & =\frac{\Delta_{\pi K}}{m_{s}-m_{u}} f_{0}(s) \tag{2}
\end{align*}
$$

τ-DECAY SPECTRUM

- πK invariant mass spectrum extracted from $\tau \rightarrow \mathrm{K}_{s} \pi^{-} \nu_{\tau}$ decays by Belle [Epifanov et al., 2007]
- Parameterized in terms of scalar F_{S} and vector F_{V} form factor

$$
\frac{\mathrm{d} \Gamma}{\mathrm{~d} \sqrt{s}} \propto \frac{1}{s}\left(1-\frac{s}{m_{\tau}^{2}}\right)\left(1+2 \frac{s}{m_{\tau}^{2}}\right) P\left[P^{2}\left|F_{V}\right|^{2}+\frac{3\left(m_{K}^{2}-m_{\pi}^{2}\right)^{2}}{4 s\left(1+2 \frac{s}{m_{\tau}^{2}}\right)}\left|F_{S}\right|^{2}\right]
$$

- Form factors of Belle based on addition of Breit-Wigners, thus violating unitarity

$$
\begin{aligned}
& F_{S}^{\text {Belle }}=\kappa \frac{s}{M_{K_{0}^{*}(700)}^{2}} \mathrm{BW}_{K_{0}^{*}(700)}+\gamma \frac{s}{M_{K_{0}^{*}(1430)}^{2}} \mathrm{BW}_{K_{0}^{*}(1430)} \\
& F_{V}{ }^{\text {Belle }}=\frac{1}{1+\beta+\chi}\left[\mathrm{BW}_{K^{*}(892)}+\beta \mathrm{BW}_{K^{*}(1410)}+\chi \mathrm{BW}_{K^{*}(1680)}\right]
\end{aligned}
$$

- $\kappa \in \mathbb{R} \quad \gamma, \beta, \chi \in \mathbb{C}$ free parameters

FIRST RIEMANN-SHEET

- T_{0} only contains information of the input phase on the real axis \rightarrow no analytic continuation to the complex plane
\rightarrow no unphysical poles by construction
- Can check T_{R} for anomalous structures

- Extract pole positions via Padé-approximations \rightarrow to be done

τ-DECAY SPECTRUM

- $\tau \rightarrow K_{S} \pi^{-} \nu_{\tau}$ decay spectrum meassured by Belle [Epifanov et al., 2007]

$$
\frac{\mathrm{d} \Gamma}{\mathrm{~d} \sqrt{ } s}=\frac{c_{\Gamma}}{s}\left(1-\frac{s}{m_{\tau}^{2}}\right)^{2}\left(1+2 \frac{s}{m_{\tau}^{2}}\right) q_{\pi K}\left(q_{\pi K}^{2}\left|f_{+}\right|^{2}+\frac{3 \Delta_{\pi K}^{2}}{4 s\left(1+2 \frac{s}{m_{T}^{2}}\right)}\left|f_{0}\right|^{2}\right)
$$

- use new formalism to calculate scalar form factor f_{0} and RChPT to model vector form factor f_{+}

