

Universitat Autònoma de Barcelona

$\pi^0 - \eta - \eta' \text{ mixing from}$ $V \rightarrow P\gamma \text{ and } P \rightarrow V\gamma \text{ decays}$

Rafel Escribano UAB and IFAE-BIST

HADRON 2021

19th International Conference on Hadron Spectroscopy and Structure

> July 26, 2021 Mexico City (Mexico)

This talk is dedicated to Simon Eidelman

What's the goal of this analysis?

To estimate the admixtures of the η and η' mesons to the physical π^0

$$|\pi^{0}\rangle = |\pi_{3}\rangle + \epsilon |\eta\rangle + \epsilon' |\eta'\rangle$$

where π_3 is the I₃=0 state of the pseudoscalar isospin triplet

The responsible of this mixing is isospin breaking

T. Feldmann, P. Kroll and B. Stech, Phys. Lett. B449 (1999) 339

$$\epsilon = 1.4\%$$
 $\epsilon' = 0.37\%$

η - η' mixing: a reminder

octet-singlet basis

 $|\eta\rangle = \cos\theta_P |\eta_8\rangle - \sin\theta_P |\eta_0\rangle \qquad |\eta_8\rangle = \frac{1}{\sqrt{6}} |u\bar{u} + d\bar{d} - 2s\bar{s}\rangle$ $|\eta'\rangle = \sin\theta_P |\eta_8\rangle + \cos\theta_P |\eta_0\rangle \qquad |\eta_0\rangle = \frac{1}{\sqrt{3}} |u\bar{u} + d\bar{d} + s\bar{s}\rangle$

quark-flavour basis

$$|\eta\rangle = \cos\phi_P |\eta_{\rm NS}\rangle - \sin\phi_P |\eta_S\rangle \qquad |\eta_{\rm NS}\rangle = \frac{1}{\sqrt{2}} |u\bar{u} + d\bar{d}\rangle |\eta'\rangle = \sin\phi_P |\eta_{\rm NS}\rangle + \cos\phi_P |\eta_S\rangle \qquad |\eta_S\rangle = |s\bar{s}\rangle$$

$$\theta_P = \phi_P - \arctan\sqrt{2} \simeq \phi_P - 54.7^\circ$$

 η - η' is heavily influenced by the U(1)_A of QCD

Previous estimates

Kroll based on the FKS scheme

$$\epsilon(z) = \cos\phi \left[\frac{1}{2} \frac{m_{dd}^2 - m_{uu}^2}{m_{\eta}^2 - m_{\pi^0}^2} + z \right]$$

$$\epsilon'(z) = \sin\phi \left[\frac{1}{2} \frac{m_{dd}^2 - m_{uu}^2}{m_{\eta'}^2 - m_{\pi^0}^2} + z \right]$$

 $\phi = 39.3^{\circ}$ $\hat{\epsilon} = \epsilon (z = 0) = (1.7 \pm 0.2)\%$ $\hat{\epsilon}' = \epsilon' (z = 0) = (0.4 \pm 0.1)\%$

P. Kroll, Mod. Phys. Lett. A20 (2005) 2667

Escribano et al. based on ChPT with resonances

R. Escribano, S. Gonzàlez-Solís and P. Roig, Phys. Rev. D94 (2016) 034008

The experimental data

 $V \rightarrow P\gamma$ and $P \rightarrow V\gamma$ decays is

the most extensive and exhaustive set of data

	Transition	Γ_{exp} (keV)	
	$ ho^0 o \eta \gamma$	44 ± 3	7%
	$ ho^0 ightarrow \pi^0 \gamma$	69 ± 9	13%
	$ ho^+ ightarrow \pi^+ \gamma$	67 ± 7	10%
	$\omega ightarrow \eta \gamma$	3.8 ± 0.3	8%
SND 2013	$\omega ightarrow \pi^0 \gamma$	713 ± 20	3%
SND 2000	$\phi ightarrow \eta \gamma$	55.4 ± 1.1	2%
KLOE 2007	$\phi o \eta' \gamma$	0.26 ± 0.01	4%
SND 2000	$\phi ightarrow \pi^0 \gamma$	5.5 ± 0.2	4%
BESIII 2018	$\eta' o ho^0 \gamma$	57 ± 3	5%
BES 2019	$\eta' ightarrow \omega \gamma$	5.1 ± 0.3	6%
	$K^{*0} \to K^0 \gamma$	116 ± 10	9%
	$K^{*+} \to K^+ \gamma$	46 ± 4	9%

The theoretical model

The most general SU(3)_F-symmetric effective Lagrangian consistent with Lorentz, P and C invariance

$$\mathscr{L}_{VP\gamma} = g_e \epsilon_{\mu\nu\alpha\beta} \partial^{\mu} A^{\nu} \mathrm{Tr}[Q(\partial^{\alpha} V^{\beta} P + P \partial^{\alpha} V^{\beta})]$$

supplemented with conventional quark model ideas to introduce flavour and isospin breaking

Magnetic dipole transitions

$$\mu_q = e_q / 2m_q \qquad 1 - s_e \equiv \overline{m} / m_s$$

Relative overlap between the P and V wavefunctions

OZI-rule: $Z_{\pi} = \langle \pi | \omega_{\rm NS} \rangle = \langle \pi | \rho \rangle$ $Z_{\rm NS} = \langle \eta_{\rm NS} | \omega_{\rm NS} \rangle = \langle \eta_{\rm NS} | \rho \rangle$ $Z_{\rm S} = \langle \eta_{\rm S} | \omega_{\rm S} \rangle$

The theoretical model

 π^0 - η - η' mixing in the quark-flavour basis

$$\begin{pmatrix} \pi^{0} \\ \eta \\ \eta' \end{pmatrix} = \begin{pmatrix} 1 & \epsilon_{12} & \epsilon_{13} \\ -\epsilon_{12}c\phi_{23} + \epsilon_{13}s\phi_{23} & c\phi_{23} & -s\phi_{23} \\ -\epsilon_{13}c\phi_{23} - \epsilon_{12}s\phi_{23} & s\phi_{23} & c\phi_{23} \end{pmatrix} \begin{pmatrix} \pi_{3} \\ \eta_{NS} \\ \eta_{S} \end{pmatrix}$$

To compare to Kroll's results:

$$\begin{pmatrix} \epsilon_{12} \\ \epsilon_{13} \end{pmatrix} = \begin{pmatrix} c\phi_P & s\phi_P \\ -s\phi_P & c\phi_P \end{pmatrix} \begin{pmatrix} \epsilon \\ \epsilon' \end{pmatrix}$$

To compare to Escribano et al.'s results:

$$\begin{pmatrix} \epsilon_{12} \\ \epsilon_{13} \end{pmatrix} = \frac{1}{\sqrt{3}} \begin{pmatrix} c\theta_P - \sqrt{2} s\theta_P & s\theta_P + \sqrt{2} c\theta_P \\ -s\theta_P - \sqrt{2} c\theta_P & c\theta_P - \sqrt{2} s\theta_P \end{pmatrix} \begin{pmatrix} \epsilon_{\pi\eta} \\ \epsilon_{\pi\eta'} \end{pmatrix}$$

The theoretical model

Couplings of the enhanced phenomenological model

$$\begin{split} g_{\rho^{0}\pi^{0}\gamma} &= g\Big(\frac{1}{3} + \epsilon_{12}z_{NS}\Big), \quad g_{\rho^{+}\pi^{+}\gamma} = g\frac{z_{+}}{3}, \\ g_{\rho^{0}\eta\gamma} &= g\Big[\Big(z_{NS} - \frac{\epsilon_{12}}{3}\Big)c\phi_{23} + \frac{\epsilon_{13}}{3}s\phi_{23}\Big], \\ g_{\omega\pi^{0}\gamma} &= g\Big[\Big(1 + \frac{\epsilon_{12}}{3}z_{NS}\Big)c\phi_{V} + \frac{2}{3}z_{S}\frac{\overline{m}}{m_{s}}\epsilon_{13}s\phi_{V}\Big], \\ g_{\eta'\rho^{0}\gamma} &= g\Big[\Big(z_{NS} - \frac{\epsilon_{12}}{3}\Big)s\phi_{23} - \frac{\epsilon_{13}}{3}c\phi_{23}\Big], \\ g_{\omega\eta\gamma} &= g\Big\{\Big[\Big(\frac{z_{NS}}{3} - \epsilon_{12}\Big)c\phi_{23} + \epsilon_{13}s\phi_{23}\Big]c\phi_{V} \\ &- \frac{2}{3}z_{S}\frac{\overline{m}}{m_{s}}s\phi_{23}s\phi_{V}\Big\}, \\ g_{\eta'\omega\gamma} &= g\Big\{\Big[\Big(\frac{z_{NS}}{3} - \epsilon_{12}\Big)s\phi_{23} - \epsilon_{13}c\phi_{23}\Big]c\phi_{V} \\ &+ \frac{2}{3}z_{S}\frac{\overline{m}}{m_{s}}c\phi_{23}s\phi_{V}\Big\}, \\ g_{\phi\pi^{0}\gamma} &= g\Big[\Big(1 + \frac{\epsilon_{12}}{3}z_{NS}\Big)s\phi_{V} - \frac{2}{3}z_{S}\frac{\overline{m}}{m_{s}}\epsilon_{13}c\phi_{V}\Big], \end{split}$$

$$\begin{split} g_{\phi\pi^{0}\gamma} &= g \Big[\Big(1 + \frac{\epsilon_{12}}{3} z_{\rm NS} \Big) s \phi_{\rm V} - \frac{2}{3} z_{\rm S} \frac{\overline{m}}{m_{\rm s}} \epsilon_{13} c \phi_{\rm V} \Big], \\ g_{\phi\eta\gamma} &= g \Big\{ \Big[\Big(\frac{z_{\rm NS}}{3} - \epsilon_{12} \Big) c \phi_{23} + \epsilon_{13} s \phi_{23} \Big] s \phi_{\rm V} \\ &+ \frac{2}{3} z_{\rm S} \frac{\overline{m}}{m_{\rm s}} s \phi_{23} c \phi_{\rm V} \Big\}, \\ g_{\phi\eta'\gamma} &= g \Big\{ \Big[\Big(\frac{z_{\rm NS}}{3} - \epsilon_{12} \Big) s \phi_{23} - \epsilon_{13} c \phi_{23} \Big] s \phi_{\rm V} \\ &- \frac{2}{3} z_{\rm S} \frac{\overline{m}}{m_{\rm s}} c \phi_{23} c \phi_{\rm V} \Big\}, \\ g_{K^{*0}K^{0}\gamma} &= -\frac{1}{3} g \Big(1 + \frac{\overline{m}}{m_{\rm s}} \Big) z_{\rm K^{0}} = -\frac{1}{3} g \Big(1 + z_{\rm S} \frac{\overline{m}}{m_{\rm s}} \Big) z_{\rm K^{0}}' \\ g_{K^{*+}K^{+}\gamma} &= \frac{1}{3} g \Big(2 - \frac{\overline{m}}{m_{\rm s}} \Big) z_{\rm K^{+}} = \frac{1}{3} g \Big(2 - z_{\rm S} \frac{\overline{m}}{m_{\rm s}} \Big) z_{\rm K^{+}}' , \end{split}$$

η - η' mixing revisited

Table 1

Comparison between estimations for the seven free parameters from the model presented in Ref. [6], using the PDG 2000 and the most up-to-date experimental data.

Parameter	Estimation from [6]	Current Estimation
g	$0.70 \pm 0.02 \text{ GeV}^{-1}$	$0.70 \pm 0.01 \mathrm{GeV^{-1}}$
$\frac{m_s}{\overline{m}}$	1.24 ± 0.07	1.17 ± 0.06
ϕ_P	$(37.7 \pm 2.4)^{\circ}$	$(41.4\pm0.5)^\circ$
ϕ_V	$(3.4\pm0.2)^\circ$	$(3.3 \pm 0.1)^{\circ}$
z _{NS}	0.91 ± 0.05	0.84 ± 0.02
ZS	0.89 ± 0.07	0.76 ± 0.04
z _K	0.91 ± 0.04	0.89 ± 0.03
$\chi^2_{\rm min}/{\rm d.o.f.}$	0.7	4.6

R. Escribano and E. Royo, Phys. Lett. B807 (2020) 135534

Results

FIT 1

$$\begin{split} g &= 0.69 \pm 0.01 \ \text{GeV}^{-1} , \qquad z_+ = 0.95 \pm 0.05 , \\ \phi_{23} &= (41.5 \pm 0.5)^\circ , \qquad \phi_V = (4.0 \pm 0.2)^\circ , \\ \epsilon_{12} &= (2.3 \pm 1.0)\% , \qquad \epsilon_{13} = (2.5 \pm 0.9)\% , \\ z_{\text{NS}} &= 0.89 \pm 0.03 , \qquad z_{\text{S}} \overline{m}/m_{\text{S}} = 0.65 \pm 0.01 , \\ z'_{\text{K}^0} &= 1.01 \pm 0.04 , \qquad z'_{\text{K}^+} = 0.76 \pm 0.04 . \\ \chi^2_{\text{min}}/\text{dof} &\simeq 4.6/2 = 2.3 \end{split}$$

 ϕ_{23}, ϕ_V very good agreement with recent published results

 $\epsilon_{12}, \epsilon_{13}$ very small but not compatible with zero, with a CL of 2.3 and 2.8 sigmas, respectively

 $\epsilon = \epsilon_{\pi \eta} = (0.1 \pm 0.9)\%$ $\epsilon' = \epsilon_{\pi \eta'} = (3.4 \pm 0.9)\%$ CL 3.8 sig.

Turning off secondary mechanism of isospin breaking

$$z_{+} = 1 \& z_{K^{0}} = z_{K}^{+}$$

 $g = 0.69 \pm 0.01 \text{ GeV}^{-1}, m_s/\overline{m} = 1.17 \pm 0.06$,

- $\phi_{23} = (41.5 \pm 0.5)^{\circ}, \qquad \phi_V = (4.0 \pm 0.2)^{\circ},$
- $\epsilon_{12} = (2.4 \pm 1.0)\%$, $\epsilon_{13} = (2.5 \pm 0.9)\%$,

 $z_{\rm NS} = 0.89 \pm 0.03$, $z_{\rm S} = 0.77 \pm 0.04$,

 $z_{\rm K} = 0.90 \pm 0.03$,

$$\chi^2_{\rm min}/{
m dof} \simeq 5.6/3 = 1.9$$

The z's are still different from zero

Secondary mechanism of SU(3)_F breaking is still required

Using Kroll's results: $\epsilon_{12} = (1.6 \pm 0.2)\%$ $\epsilon_{13} = (-0.8 \pm 0.1)\%$

$$\begin{split} g &= 0.69 \pm 0.01 \ \text{GeV}^{-1} \ , m_{\text{s}}/\overline{m} = 1.17 \pm 0.06 \ , \\ \phi_{23} &= (41.4 \pm 0.5)^{\circ} \ , \qquad \phi_{V} = (3.1 \pm 0.1)^{\circ} \ , \\ z_{\text{NS}} &= 0.86 \pm 0.0 \ , \qquad z_{\text{S}} = 0.77 \pm 0.04 \ , \\ z_{\text{K}} &= 0.90 \pm 0.03 \ , \end{split}$$

 $\chi^2_{\rm min}/{
m dof} \simeq 22.0/5 = 4.4$

Using Escribano et al's results:

$$\begin{split} \epsilon_{12} &= (7.5 \pm 0.2) \times 10^{-3} \qquad \epsilon_{13} = (-6.3 \pm 0.2) \times 10^{-3} \\ g &= 0.70 \pm 0.01 \ \text{GeV}^{-1} \ , m_s / \overline{m} = 1.17 \pm 0.06 \ , \\ \phi_{23} &= (41.4 \pm 0.5)^\circ \ , \qquad \phi_V = (3.2 \pm 0.1)^\circ \ , \\ z_{\text{NS}} &= 0.85 \pm 0.02 \ , \qquad z_{\text{S}} = 0.77 \pm 0.04 \ , \\ z_{\text{K}} &= 0.90 \pm 0.03 \ , \end{split}$$

 $\chi^2_{\rm min}/{\rm dof} \simeq 24.0/5 = 4.8$

Theoretical estimations by Kroll and Escribano et al. do not appear to agree with the most recent experimental data

Charged and neutral kaon transitions are not considered

$$g = 0.69 \pm 0.01 \text{ GeV}^{-1}, z_{\text{S}}\overline{m}/m_{\text{S}} = 0.65 \pm 0.01 ,$$

$$\phi_{23} = (41.5 \pm 0.5)^{\circ}, \qquad \phi_{V} = (4.0 \pm 0.2)^{\circ} ,$$

$$\epsilon_{12} = (2.4 \pm 1.0)\%, \qquad \epsilon_{13} = (2.5 \pm 0.9)\%,$$

$$z_{\text{NS}} = 0.89 \pm 0.03 .$$

$$\chi^2_{\rm min}/{\rm dof} \simeq 5.6/3 = 1.9$$

 $\epsilon_{12}, \epsilon_{13}$ again incompatible with zero, with a CL of 2.4 and 2.8 sigmas, respectively

Results

Summary of Fits

Table 2

Summary of fitted values for the Fit 1, Fit 2, Fit 3, Fit 4 and Fit 5, corresponding to Eqs. (13), (14), (15), (16), and (17), respectively.

Parameter	Fit 1	Fit 2	Fit 3	Fit 4	Fit 5
$g (\text{GeV}^{-1})$	0.69 ± 0.01	0.69 ± 0.01	0.69 ± 0.01	0.70 ± 0.01	0.69 ± 0.01
ϵ_{12}	$(2.3 \pm 1.0)\%$	$(2.4 \pm 1.0)\%$	-	-	$(2.4 \pm 1.0)\%$
ϵ_{13}	$(2.5\pm0.9)\%$	$(2.5\pm0.9)\%$	-	-	$(2.5\pm0.9)\%$
ϕ_{23} (°)	41.5 ± 0.5	41.5 ± 0.05	41.4 ± 0.5	41.4 ± 0.5	41.5 ± 0.5
ϕ_V (°)	4.0 ± 0.2	4.0 ± 0.2	3.1 ± 0.1	3.2 ± 0.1	4.0 ± 0.2
m_s/\overline{m}	-	1.17 ± 0.06	1.17 ± 0.06	1.17 ± 0.06	-
$z_{\rm S}\overline{m}/m_s$	0.65 ± 0.01	-	-	-	0.65 ± 0.01
z _{NS}	0.89 ± 0.03	0.89 ± 0.03	0.86 ± 0.02	0.85 ± 0.02	0.89 ± 0.03
z_+	0.95 ± 0.05	-	-	-	-
ZS	-	0.77 ± 0.04	0.77 ± 0.04	0.77 ± 0.04	-
z _K	-	0.90 ± 0.03	0.90 ± 0.03	0.90 ± 0.03	-
z'_{K^0}	1.01 ± 0.04	-	-	-	-
z'_{K^+}	0.76 ± 0.04	-	-	-	-
$\chi^2_{\rm min}$ /d.o.f.	2.3	1.9	4.4	4.8	1.9

Conclusions

- The quality of the most up-to-date experimental data enables a small amount of isospin-symmetry breaking that is incosistent with zero with a CL of aprox. 2.5 sigmas
- The quality of the performed fits is good
- The estimations for the fit parameters appear to be robust
- Our estimates for

 $\epsilon_{12} = (2.4 \pm 1.0)\% \qquad \qquad \epsilon = \epsilon_{\pi\eta} = (0.1 \pm 0.9)\% \\ \epsilon_{13} = (2.5 \pm 0.9)\% \qquad \qquad \epsilon' = \epsilon_{\pi\eta'} = (3.5 \pm 0.9)\%$

are not in accordance with theoretical estimates