The radiative decay width measurement of the η -meson at GlueX

Igal Jaeglé Thomas Jefferson National Accelerator Facility

For the GlueX Collaboration

July 26, 2021 19th International Conference on Hadron Spectroscopy and Structure

Igal Jaeglé (Jlab)

Introduction

Measuring the partial decay width of $\eta \to \gamma \gamma$:

- Decays mainly through the chiral anomaly
- Will improve other η partial decay width measurements
- Allows for determining fundamental aspects of QCD in a model-independent manner:
 - Light quark mass ratio $\mathcal{Q}^2 = \frac{m_s^2 \hat{m}^2}{m_d^2 m_u^2}$

• $\eta - \eta'$ mixing angle

Primakoff photoproduction of an $\eta\text{-meson}$ off a nucleus

1	[gal	J	aeglé	(\mathbf{J})	lab)

Discrepancy between the existing measurements

Between Collider and fixed target experiments

- This discrepancy causes a difference in the calculated $\eta \eta'$ mixing angle
- The mixing angle discrepancy is $> 6^{\circ}$
- PrimEx-eta aims for a 3.2% uncertainty on $\Gamma_{\eta\to\gamma\gamma}$, which will yield a 0.45° uncertainty on the mixing angle

We will show today preliminary results of phase I PrimEx-eta measurements (2019 data set)

Theoretical differential cross-section

Known for spin-zero nucleus such as ${}^{4}\mathrm{He},\,\gamma+{}^{4}\mathrm{He}\rightarrow\eta+{}^{4}\mathrm{He}:$

- Primakoff contribution is directly proportional to the $\Gamma_{\eta \to \gamma \gamma}$ decay width $\frac{d\sigma_P}{d\Omega} = \left[\Gamma_{\eta \to \gamma \gamma} \right] \frac{8\alpha Z^2}{m^3} \frac{\beta^3 E^4}{Q^4} |F_{e.m.}(Q)|^2 \sin^2 \theta$
- Primakoff contribution increases with increasing incident photon-beam energies

Simultaneously measuring Compton cross-section as an exactly calculable reference process

Igal Jaeglé (Jlab)

4 / 13

The GlueX setup

Photon-beam produced, 75 m upstream from the target center, by bremsstrahlung:

- Electron-beam energy varies between 11.1 and 11.6 GeV
- Solenoid not used (no magnetic field)

To increase acceptance to Compton events for incident photon-beam energies above 6 GeV, a calorimeter is added 4 m downstream from Forward Calorimeter

Igal Jaeglé (Jlab)

Compton photoproduction off an atomic electron

Hall D is not optimized for precision absolute cross-section measurements at forward angles

- Compton cross-section is a known QED process and is used as a reference process:
 - Verify systematics
 - Monitor luminosity
 - MC simulation validation

• Compton Calorimeter (right-figure) covers angle between 0.2 and 1° Compton detection efficiency varies between 12 and 5 % for E_{γ} between 6 and 11.3 GeV Igal Jaeglé (Jlab) η radiative decay width Hadron 2021 6

Control channel: $\gamma e^- \rightarrow \gamma e^-$

Selection criteria:

- At least two clusters with one in the Forward and one in the Compton Calorimeters
- Elasticity required (energy difference between incident photon-beam and two clusters)
- Coplanarity required

Preliminary Compton cross-section measurements

First cross-section measurements in this energy range:

Igal Jaeglé (Jlab)

Hadron 2021 8 / 13

$\eta \to \gamma \gamma$, selection criteria

Two clusters in Forward Calorimeter:

- Barrel Calorimeter used to veto hadronic backgrounds
- Time-Of-Flight wall used to veto charged particles
- Elasticity required
- He target

Empty target

Clear signal but includes Primakoff and coherent events, and non-negligible background beneath η coming from beamline

$\eta \to \gamma \gamma$, very preliminary polar angle distributions

- Beamline background not yet understood
- Larger empty target sample is needed

$\eta \to \pi^0 \pi^0 \pi^0$, selection criteria

- 6 clusters (Barrel and Forward Calorimeters)
- Time-Of-Flight wall used to veto charge particles
- Elasticity required

Lower statistic compared to $\eta\to\gamma\gamma$ but cleaner signal

Igal Jaeglé (Jlab)

$\eta \to \pi^0 \pi^0 \pi^0$, very preliminary polar angle distributions

Beamline background is not an issue and angular resolution similar to $\eta \to \gamma \gamma$

Fair agreement between data and simulation

Conclusions

Phase I data set of the PrimEx-eta measurements shows promising results for

- Preliminary Compton cross-section measurements in good agreement with theoretical cross-section
- $\eta \to \gamma \gamma$ but with non-negligible background coming from the beamline
- $\eta \to \pi^0 \pi^0 \pi^0$ but with lower statistics

Phase II will start in 3 weeks from now

- Electron-beam will be 10.3 GeV (not the optimal energy for this measurement)
- Will test beamline improvements: shielding added downstream from target and Helium beampipe added between Forward and Compton Calorimeters
- Will test magnetic effect (Solenoid will be turned on)

Phase III with optimal 12 GeV electron-beam scheduled for 2022

GlueX acknowledges the support of several funding agencies and computing facilities: http://www.gluex.org/thanks

Thank you for your attention

Igal	Jaeg	lé (Jla	Ь)