

S.Miscetti@Hadron-2021: latest hadron physics results from KLOE/KLOE-2

□ KLOE and KLOE-2 @ Da∳ne

□ Measurement of BR($\eta \rightarrow \pi^+\pi^-$)

□ Search for a Leptophobic B boson

□ Preliminary measurement of BR($\eta \rightarrow \pi^0 \gamma \gamma$)

□ Status ISR measurement of $\pi^+\pi^-\pi^0$ final state

 \Box Status of $\gamma\gamma \rightarrow \pi^0$ measurement with low angle tagging system

□ First look to $\phi \rightarrow \eta \pi^+ \pi^-$ and $\phi \rightarrow \eta \mu^+ \mu^-$ decays

□ Conclusions

🕡 The Daone of Factory : KLOE/KLOE-2 performance 💦

Daone upgrade 2012-2014

✓ new IR with large beam crossing
 + sextupoles for crabbed waist
 ✓ 60% increase in luminosity

→ Lpeak = 2.4
$$E^{32}$$
 cm⁻² sec⁻¹
→ Ltotal = 6.8 /fb

• e+e- collider at SQRT(s) = Mphi = 1019.6 MeV

- 2 IR + 2 separate rings
- Trf = 2.7 ns with 105 + 105 bunches
- Continuous injection during data taking
- Crossing angle 2x12.5 mrad

Best Dafne performace with KLOE (1999-2006)

- $\rightarrow \text{Lpeak} = 1.5 \text{ E}^{32} \text{ cm}^{-2} \text{sec}^{-1}$
- \rightarrow Ltotal = 3/fb

KLOE-2 run: Ltot (acquired) = 5.5/fb

KLOE+KLOE-2 data sample: 8/fb \rightarrow 2.4 E¹⁰ ϕ mesons

The largest ever collected sample at the $\phi(1020)$ peak

KLOE detector

Drift chamber:

- Gas mixture: 90% He, 10% isobutane
- Resolutions: $\sigma_{xy} \sim 150 \mu m$, $\sigma_z \sim 2mm$,
 - $\frac{\sigma p_t}{p_t} < 0.4\% \ (45^\circ < \theta < 135^\circ), \sigma_v \sim 3mm$

Electromagnetic calorimeter:

- Made of lead/scintillating fibers
- Covers 98% of solid angle

- Resolutions:
$$\frac{\sigma_E}{E} = \frac{5.7\%}{\sqrt{E(GeV)}}$$
,
 $\sigma_T = \frac{57 \ ps}{\sqrt{E(GeV)}} \oplus 140 \ ps$

- Magnetic field ~0.52 T

KLOE-2 upgrades

CCALT (LYSO-cristals) & **QCALT** (scintillator tiles and fibers with SiPM read-out): both inside KLOE detector, to improve low polar angles acceptance for γ 's & K_L decays

LET: LYSO with SiPM readout, ~ 1 m from the IP, $\gamma\gamma$ -physics

IT: 4 layers of cylindrical GEM detectors, larger acceptance for low p_t tracks, to improve vertex resolution at the Interaction Point

HET: Scintillator + PMT 11 m from the IP, γγ-physics

KLOE-2 physics

KLOE-2 coll. EPJC (2010) 68, 619

http:// agenda.infn.it/event/kloe2ws procs. EPJ WoC 166 (2018)

KAON Physics:

- CPT and QM tests with kaon interferometry
- Direct T and CPT tests using entanglement
- CP violation and CPT test: $K_{\rm S}$ ->3 π^0

direct measurement of $\text{Im}(\varepsilon'/\varepsilon)$ (lattice calc. improved)

• CKM Vus:

 K_s semileptonic decays and A_s (also CP and CPT test) $K\mu 3$ form factors, Kl3 radiative corrections

- $\chi pT: K_S \rightarrow \gamma \gamma$
- Search for rare K_S decays

Hadronic cross section

- ISR studies with 3π , 4π final states
- F_p with increased statistics
- Measurement of a_{μ}^{HLO} in the space-like region using Bhabha process

Dark forces:

- Improve limits on: Uy associate production $e^+e^- \rightarrow U\gamma$, $U \rightarrow \mu\mu$, $\pi\pi$, ee
- Higgstrahlung $e^+e^- \rightarrow Uh' \rightarrow \mu^+\mu^- + miss.$ energy
- Leptophobic B boson search $\phi \rightarrow \eta B, B \rightarrow \pi^0 \gamma, \eta \rightarrow \gamma \gamma$ $\eta \rightarrow B \gamma, B \rightarrow \pi^0 \gamma$
- Search for U invisible decays

Light meson Physics:

- η decays, ω decays
- Transition Form Factors
- C,P,CP violation: improve limits on $\eta \rightarrow \gamma \gamma \gamma, \pi^+\pi^-, \pi^0\pi^0, \pi^0\pi^0\gamma$
- improve $\eta \to \pi^+ \pi^- e^+ e^-$
- $\chi pT: \eta \rightarrow \pi^0 \gamma \gamma$
- Light scalar mesons: $f_0(500)$ in $\Phi \rightarrow K_S K_S \gamma$
- $\gamma \gamma$ Physics: $\gamma \gamma \rightarrow \pi^0$ and π^0 TFF
- Search for axion-like particles

status of N-> T+T

- P, CP-violating process
- In the SM the BR prediction [*Phys.ScriptaT* 99, 23 (2002)]:
 - proceed only via CPV in weak interaction $\rightarrow 10^{-27}$
 - introducing a CPV term in QCD $\rightarrow 10^{-17}$
 - allowing CPV in the extended Higgs sector $\rightarrow 10^{-15}$
- An observation of larger branching ratio would mean new source of CP violation in the strong interactions
- Previous KLOE result [*Phys.Lett.B* 606 (2005) 276] based on 0.4 fb⁻¹: < 1.3.10⁻⁵ @90% CL
- LHCb: $< 1.6 \cdot 10^{-5}$ @90% CL [*Phys.Lett.B* 764 (2017) 233-240]

- New analysis using independent 1.6 fb⁻¹ of KLOE data
- No event excess in the η region, limit extracted using CL_s technique

BR($\eta \rightarrow \pi^+ \pi^-$) < 4.9 · 10⁻⁶ @ 90% CL

Combined with previous KLOE result: < 4.4 · 10⁻⁶ @ 90% CL
 Published in JHEP10 (2020) 047

Search for a Leptophobic B-boson – 1

ny

η'→ π⁺π⁻π

[Tulin, PRD89(2014)114008]

100 GeV

Y(1S)→had

Tf -> TO YY

 $\omega \rightarrow$

ηπ0.

0.1

 10^{-3}

a 10-4

0.01 = n - Pb

- Dark Force mediator coupled to baryon number (B-boson) with the same quantum numbers of the $\omega(782) \Rightarrow I^{G}=0^{-1}$
- Leptophobic .. i.e. it couples mostly to quarks
- Can have an impact on (g-2)mu anomaly

$$\mathcal{L} = rac{1}{3} \mathbf{g_B} ar{\mathbf{q}} \gamma^\mu \mathbf{q} \mathbf{B}_\mu \quad lpha_\mathbf{B} = rac{\mathbf{g}_\mathbf{B}^2}{4\pi} \lesssim \mathbf{10^{-5}} imes (\mathbf{m_B}/\mathbf{100 MeV})$$

- Dominant decay channel ($m_B < 600 \text{ MeV}$): $B \rightarrow \pi^0 \gamma$
- Can be studied in:

- Searched for in full KLOE stat. (1.7/fb) in 5 photon final state (η and π^0 intermediate states)
- Kinematic fit used to improve energy resolution.
- Main background comes from

 $\blacklozenge \phi \mathrel{\widehat{}} a_0 \gamma \mathrel{\widehat{}} \eta \pi^0 \gamma$

 $\Rightarrow \phi \Rightarrow \eta \gamma \Rightarrow 3 \pi^0 \gamma \Rightarrow 7 \gamma$ with 2 lost or merged photons

- B-Boson expected to appear as a sharp peak in the $M(\pi^0\gamma)$ distribution
- For upper limit evaluation, background is estimated from fitting to the side-bands excluding the signal region
- Correction for reconstruction efficiency and luminosity underway to set a limit on BR
- Expect to vastly improve existing limits on α_B .

Prel. measurement of BR (n > Toy)

[Ll. Ametller et al. PLB 276(1) (1984)]

- χ PT "golden mode": O(p²) null, O(p⁴)=0 on the tree level and suppressed on 1loop by G-parity and large kaon mass \Rightarrow O(p⁶) are dominating
- $M(\gamma\gamma)$ that are not coming from π° can be used as a test of theoretical models

Relevance of $\phi \rightarrow \eta \gamma$, $\eta \rightarrow \pi^0 \gamma \gamma$

BR = $(22.1 \pm 2.4 \pm 4.7) \times 10^{-5}$ CB@AGS (2008) BR = $(25.2\pm2.5) \times 10^{-5}$ CB@MAMI (2014)

Old KLOE preliminary: $(8.4\pm2.7\pm1.4)\times10^{-5}$ (L = 450 pb⁻¹ ~ 70 signal events)

 $\frac{1}{20} + \frac{1}{40} + \frac{1}{40}$

Most recent Theory evaluation R.Escribano et al. PRD 102 (2020) 034026 $BR=1.35(8)\times10^{-4}$

$\phi \rightarrow \eta \gamma$, with $\eta \rightarrow \pi^0 \gamma \gamma$ new analysis strategy

□ A new analysis of KLOE data carried out using x4 larger data sample (~1.7/fb)

- □ Similar strategy to the prompt analysis of the B-Boson
- □ Energy resolution of all variables improved by means of a kinematic fit
- \Box Kinematic fit with constraints on η and π^0 masses used to reject a0
- $\hfill\square$ Two π^0 events removed to suppress ϕ and ω
- □ TMVA-BDT based rejection for η ->3 π^0 merging cases using cluster shapes as an input

KLOE: $\eta \rightarrow \pi^0 \gamma \gamma$ signal

Great agreement of data-MC sum of S+all background components. Residuals have pull sigma=1 Clear evidence of the signal (S/B~0.1) ~ 20% efficiency 10% stat. error i.e. 3 times better than previous KLOE study

BR normalization: counting $\eta -> 3\pi^0$

- Normalization based on very stable counting of 7 photons events.
- few % stability on the counting if integrating 6-8 photon events
- In agreement with latest theory calculation and with old KLOE preliminary (1.3 sig)
- Work on systematics is well progressed (Kin fit, TVMA, Chi2 cut)
- Work on M(gg) spectrum is also on-going

status of W -> TO

γγ Physics at KLOE-2

for quasi-real photons
$$J^{PC}(X) = \{0^{\pm,+}, 2^{\pm,+}\}$$

 $\rightarrow X = \{\pi^0, \pi\pi, \eta\}$

Physics Goals of tagging low-angle scattered e+/e- in KLOE-2

□ Precise measurement of the $\Gamma(\pi^0 ->\gamma\gamma)$ with collider method (i.e. as CBAL, ASG) → Aiming at few % precision

□ Measurement of the FF for $q^2 < 0.001 \text{ GeV}^2$

HET: Scintillator hodoscope with

28 plastic scintillators in Roman Pots

 $\sigma_{\theta} \sim 2, 5 \text{mrad}, \sigma_{r} \sim 5 \text{mm}, \sigma_{t} \sim 500(1) \text{ps}$

- HET (High Energy Tagging) stations located 11 m away from IP after the first Bending dipole of DaΦne acting as a momentum Spectrometer for the scattered leptons
- HET acquisition syncronized w.r.t. the KLOE DAQ with DaΦne (each 325 ns) and the KLOE trigger. The HET acquisition window corresponds to 2.5 DaΦne revolutions recorded when a KLOE trigger is asserted
- Analysis is based on the accidental pure (A0/A2) samples used for background modeling with respect to the accidental + HET*KLOE coincidences (A+ sample)

Status of $\gamma\gamma \rightarrow \pi^0$ search with 1.5/fb (1)

reconstruction of 3 fb⁻¹ completed
 Here we present only 2017-2018 data surviving our DQM

□ Single-arm selection established

- 2 photon sample associated to the same bunch crossing
- Selected bunch crossing, and, independently selected HET signal, in a time window of 40 ns around the KLOE trigger

□ Simultaneous fits of A+/A samples

Fit to accidental-pure samples used to constrain the

- number of accidentals in A+
- Time coincidence window : 4 bunch crossings
- Accidental pure sample (A) used to model background pdf
- Signal pdfs by Ekhara simulation, control samples and BDSIM transport of the leptons through the beam line.
- Acceptance extracted using low angle radiative Bhabha cross section measurements .. in progress

Status of $\gamma\gamma \rightarrow \pi^0$ search with 1.5/fb (2)

Status of $\gamma\gamma \rightarrow \pi^0$ search with 1.5/fb (3)

3% precision on signal reached with ~ 1.5 fb⁻¹ (2017-18 data)

- □ Now performing calibration of the other samples
- → Investigating effect of kinematic fit procedure on reconstructed variables
- \rightarrow Example of «iper-selected» events shown below

 $M_{\gamma\gamma}$ with $I\Delta T_{\gamma\gamma}$ - $\Delta R_{\gamma\gamma}$ /cl< 0.3ns and cos θ <-0.95

Status of ISR production of Tt T TO

3π channel with ISR return (1)

- 3π channel represents the second largest contribution on a_{μ}^{HVP} at the leading order, both in absolute values and uncertainties.
- Current cross section measurement of $e^+e^- \rightarrow 3\pi$ comes from CMD-2/SND measurement with energy scan and by Babar/BES with ISR technique.
- For SQRT(s) < Mφ, this measurement is feasible using ISR technique in KLOE/KLOE-2
- Improve lack of ISR data samples in low energy region, complementary results to direct energy scans

Further physics goals:

- ✓ to extract the peak cross section of the process $e^+e^- \rightarrow V \rightarrow 3\pi$, involving vector resonances $V = \varphi, \omega$ and to measure cross section of nonresonant process $e^+e^- \rightarrow \gamma \rightarrow 3\pi$
- ✓ to measure product of branching fractions B(ω → e⁺e⁻) x B(ω → 3 π)

3π channel with ISR return (2)

In KLOE we can use 246/pb off-peak and 1.7/fb on-peak

- Sample used: 1.7/fb on-peak
- MC signal generated with PHOKHARA 5

Event selection:

- At least two tracks with opposite curvature
- Three neutral clusters with:
 - $|\cos\theta| < 0.92$, Eclu >15 MeV,
 - Tclu-Rclu/c < min (2,5 σ_t) ns
- Two tracks with opposite curvature that are extrapolated inside a cylinder with

$$r = \sqrt{x^2 + y^2} < 4 \text{ cm and } |z| < 10 \text{ cm}$$

Additional selections:

- Kinematic fit with seven constraints $\chi^2_{7C} < 26$ rejects Kaons
- $\cos\gamma\gamma < 140^{\circ}$ to reject Bhabhas
- $E_{\gamma} < 207$ MeV to reject $\rho \pi$

$$E_{\gamma} = |\bar{p}_{\pi^{+}} + \bar{p}_{\pi^{-}}| - \left(\sqrt{s} - \sqrt{m_{\pi}^{2} + p_{\pi^{-}}^{2}} - \sqrt{m_{\pi}^{2} + p_{\pi^{+}}^{2}}\right)$$
$$\beta_{\pi} < f_{\beta} \left(M_{2\pi}\right)$$

$$e^+e^- \rightarrow hadrons + \gamma$$

3π channel with ISR return (3)

- Data fit with a single BW convoluted with the ISR radiator and a mass resolution smearing function
- □ Large improvement on fit quality with better mass resolution description (2 gaussians) → Still improveable
- **Errors on fit parameters are excellent (** 10-50 keV on Γ and Mass and % on Bee*B3 π)
- □ Analysis of systematics on analysis cuts, background subraction still on-going
- Theory fit model being refined

First look for the $\phi \rightarrow \eta \pi^+ \pi^-$ and $\phi \rightarrow \eta \mu^+ \mu^-$ decays

- In VMD model, e+e-→ηπ+π- is proceed via ρ resonances, mainly via ρη intermediate state. KLOE/KLOE-2 data allow to measure the line shape around φ
- φ→ηπ+π- violates the OZI rule and G-parity, VMD predicts the Br~ 0.35×10-6. Br<1.8×10-5@ 90% CL @ CMD-2 PLB491(2000)81
- The same sample can be also used to search for the Dalitz decay φ→ημ+μ-, Br<0.94×10⁻⁵ @ 90% CL @ CMD-2 PLB501(2001)191

With ~700 pb⁻¹ KLOE data, analysis procedure for $\phi \rightarrow \eta \pi^+ \pi^-$ and $\eta \mu^+ \mu^-$ is established:

- η→γγ/π⁰π⁰π⁰
- 2 charged tracks

clear $\phi \rightarrow \eta \pi^+ \pi^-$ and $\eta \mu^+ \mu^-$ signals

- The KLOE and KLOE-2 experiment have collected a total of 8/fb of high quality data for both Kaon Physics and **low energy hadrons**
- We have published the world best limit on $\eta -> \pi^+ \pi^-$ using the whole KLOE data sample reaching the limit **BR** < 4.9E⁻⁶, 3 times better than previous one
- We are studying 5 photon final state to set the world best limit on the leptophobic B-Boson searching for the decay chain φ->ηB, B->π⁰γ
 - → same 5 photon sample is used to study the golden Chi-pt process $\phi \rightarrow \eta\gamma$, $\eta \rightarrow \pi 0\gamma\gamma$ Our preliminary BR is ~1/2 of previous best measurements and in agreement with the most recent theory calculation
- We are using π⁰'s produced with γγ-fusion and tagged with our low angle tagging system to determine the Γ(π⁰->γγ) of this process. 8% stat. error reached on the first 1.5/fb
- A clean signal of 3π final state in the ω region through ISR method is established. Statistical determination of the parameters looks very promising.
- We have observed for the first time, clean signals for $\phi \rightarrow \eta \pi^+ \pi^-$ and $\phi \rightarrow \eta \mu^+ \mu^-$ decays
- Working hard to complete all of these items. **Stay tuned**

Additional material

- Study on 1.7 fb⁻¹ of KLOE data
- 5 prompt photons in the final state: • $\phi \rightarrow \eta B \rightarrow \eta (\gamma \gamma) \pi^{\circ} (\gamma \gamma) \gamma \rightarrow 5 \gamma$
- Main background coming from: $\phi \rightarrow (a_0 \rightarrow \eta \pi^\circ) \gamma$ and $\phi \rightarrow (\eta \rightarrow 3\pi^\circ) \gamma$ with lost or merged photons
- Kinematic fit to improve resolution

 $M(2\gamma)$ after kinematic fit correction

Motivation: infer HET $A\times\varepsilon$ with high precision

 $P_0 = (1 - p_b)^N$

 P_0 : probability to have no signal in the HET p_b : probability per bunch crossing to register one radiative Bhabha with the HET, linearly increasing with luminosity (L $[10^{32} \text{ cm}^{-2} \text{s}^{-1}]$) N: number of bunches considered in the measurement (N=22)

Data analyzed per bin of circulating DAFNE currents (I_{e,p} [A]) and per HET channel Measured probability $p = p_b \times (T_{bunch}/10 \text{ ns})$

 $A' \times \sigma_{Bha}$ estimated by a fit to P_0 as a function of L measured by KLOE with Large Angle Bhabha

Fit function: $(1 - p)^{N}$, $p = K + A' \times \sigma_{Bha} \times L$, $K = \alpha \times I_{e,p}^{\beta}$

σ (X_{HET}, Y_{HET}), Bbbrem vs Ekhara

EMC Resolution and Trigger efficiency using radiative Bhabhas control samples

<u>Left</u>: Chi-square distribution after pre-selections. <u>Middle</u>: Photon energy distribution after the χ^2_{7C} cut. <u>Right</u> Opening angle distribution after χ^2_{7C} and E_{γ} cuts. <u>Arrows</u>: Nominal

<u>Left</u>: Invariant mass $M_{3\pi}$ after the scaling. <u>Middle</u>: Enlarged in omega region. <u>Right</u>: Residual distribution after the scaling.

Breit-Wigner resonance

□ Narrow resonances:
$$J/\psi$$
, ϕ and ω
 $\sigma_{3\pi}^{BW}(s') = \frac{12\pi}{M_V^2} \frac{s'}{(s'-M_V^2)^2 + M_V^2 \Gamma_V^2} \Gamma_{ee} \Gamma_{3\pi}$

□ ISR distorted visible cross section. $m = \sqrt{s(1-x)}.$

Determine $\Delta\Gamma$ and $\Delta \mathscr{BB}$

 $\sigma_{3\pi}^{\rm BW} \otimes W_0(s,x)$ in small mass interval $\Delta M_{3\pi}$, $N_{3\pi}^{\rm teo} = \mathcal{L}_{\rm int} \sigma_{3\pi}^{\rm vis} \approx L_{\rm ISR} \sigma_{3\pi}^{\rm BW}$, where

$$\sigma_{3\pi}^{\rm vis} \approx \int_0^{x_{\rm max}} \varepsilon(s, x) W_0(s, x) \sigma_{3\pi}^{\rm BW}(s(1-x)) dx,$$

resulting

$$\begin{split} \sigma_{3\pi}^{\text{vis}}(\Gamma,\mathscr{BB}) \to \\ \sigma_{3\pi}^{\text{BW}}(\Gamma_{\text{BW}} + \Delta\Gamma,\mathscr{BB}_{\text{BW}} + \Delta\mathscr{BB}) \end{split}$$

Graph

Normalized Breit-Wigner line shape in omega-mass region (Black). Effective line shape distorted by the ISR photon emission (Red).