

Studying the a₀(980) tetraquark candidate using K⁰_SK[±] interactions in the LHC ALICE Collaboration

Thomas Humanic (Ohio State University) for the ALICE Collaboration

HADRON 2021 July 26 , 2021 Predicted low-lying tetraquark nonet with candidate mesons

Tetraquark nonet Alford and Jaffe, Nucl. Phys. B 578 (2000)

Mass

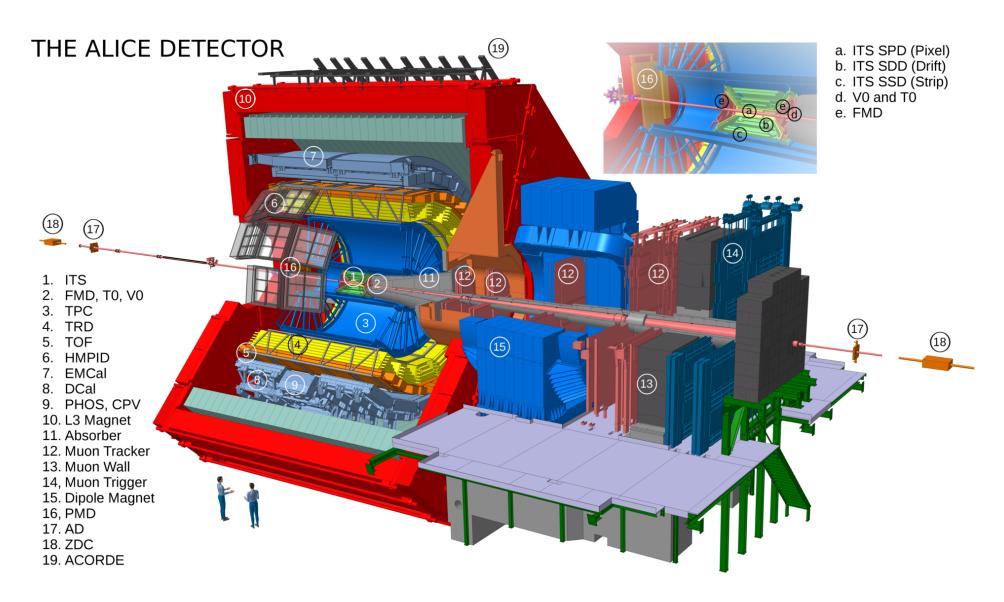
 $a_0(980)$ KK $u ar{u} \, / \, d d$ $u ar{d} s ar{s}$ $d\bar{u}s\bar{s}$ f₀(980) $K_{0}^{*}(700)$ $u\bar{s}d\bar{d}$ $K\pi$ $f_0(500)$ udud $\pi\pi$ I_3 _1 0 1

Low-lying tetraquark states have been predicted for > 40 years.

Candidate mesons with the expected masses, isospins and decay channels have been found: e.g. $a_0(980)$, $f_0(980)$, $K^*_0(700)$, $f_0(500)$..

→ But, it is still controversial whether or not these mesons are four-quark states (e.g. see "Non-qq-bar Mesons" in 2021 Review of Particle Physics)

→ Study the $a_0(980)$ with $K_8^0 K^{\pm}$ femtoscopy in pp and Pb-Pb collisions in the LHC ALICE Collaboration

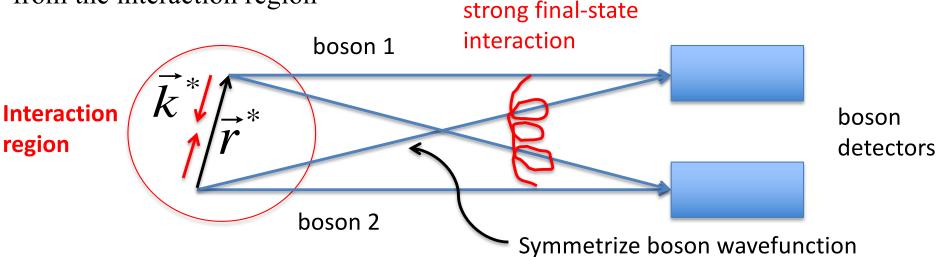


Data sets used in this analysis: →

 $\sqrt{s_{\rm NN}} = 2.76$ TeV Pb – Pb collisions, 0-10% central $\sqrt{s} = 7$ TeV pp collisions, minimum bias 3

Femtoscopy with quantum statistics and strong final-state interactions R. Lednicky and V.L. Lyuboshits, (Sov. J. Nucl. Phys. 35 (1982))

Consider the correlations of two **identical bosons**, e.g. $K_{S}^{0}K_{S}^{0}$, emitted from the interaction region



If \vec{r}^* and \vec{k}^* are the relative distance between the bosons and the momentum of each boson in the pair reference frame, then the non-symmetrized wavefunction describing the elastic interaction between the bosons is

S-wave scattering amplitude

$$\Psi_{-\vec{k}^*}(\vec{r}^*) = e^{-i\vec{k}^* \cdot \vec{r}^*} + f(\vec{k}^*) \frac{e^{ik^*r^*}}{r^*}$$

s-wave FSI term

Assume the boson source density in the pair reference frame is a Gaussian with radius parameter, R,

$$S(r^*) \sim \exp\left(-\frac{r^{*2}}{4R^2}\right)$$

The two-boson correlation function is calculated by integrating over the symmetrized wavefunction weighted by the boson source density,

$$C(k^{*}) = \int d^{3}\vec{r}^{*}S(r^{*}) \left| \Psi_{-\vec{k}^{*}}^{S}(\vec{r}^{*}) \right|^{2}$$

$$= 1 + \lambda e^{-4k^{*2}R^{2}} + \lambda \alpha \left[\left| \frac{f(k^{*})}{R} \right|^{2} + \frac{4\Re f(k^{*})}{\sqrt{\pi R}} F_{1}(2Rk^{*}) - \frac{2\Im f(k^{*})}{R} F_{2}(2Rk^{*}) \right]$$
quantum statistics Final-state interaction term term term where $F_{1}(z) = \int_{0}^{z} dx \frac{e^{x^{2}-z^{2}}}{z} \qquad F_{2}(z) = \frac{1-e^{-z^{2}}}{z}$

The parameter λ is an empirical parameter that measures the correlation strength $\rightarrow \lambda = 1$ in the ideal case, and $\alpha = 0.5$ for $K_{S}^{0}K_{S}^{0}$ correlations.

Scattering amplitude
for
$$\mathbf{K}^{0}_{\mathbf{S}}\mathbf{K}^{0}_{\mathbf{S}}$$
 $f(k^{*}) = \frac{f_{0}(k^{*}) + f_{1}(k^{*})}{2}$

$$f_I(k^*) = \frac{\gamma_I}{m_I^2 - s - i(\gamma_I k^* + \gamma_I' k_I')}$$

~ /

I = 0 refers to the isospin-0 $f_0(980)$ resonance and I = 1 refers to the isospin-1 $a_0(980)$ resonance, and the γ_I are the couplings of the resonances to their decay channels.

f₀(980) ^[/]	[<i>j</i>] $I^{G}(J^{PC}) = 0^{+}(0^{+})$						
	Mass $m=990\pm20$ MeV Full width $\Gamma=10$ to 100 MeV						
f ₀ (980) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)					
$\pi \pi K \overline{K}$	dominant seen seen	476 36 495					
a₀(980) ^[j]	$I^{G}(J^{PC}) = 1^{-}(0^{+})$	-+)					
Mass $m=$ 980 Full width $\Gamma=$	\pm 20 MeV 50 to 100 MeV						
a ₀ (980) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)					
$\eta \pi \kappa \overline{K}$	dominant seen	319 †					

From Particle Data Book for light quark-antiquark mesons

$C(k^*)$ is measured experimentally as

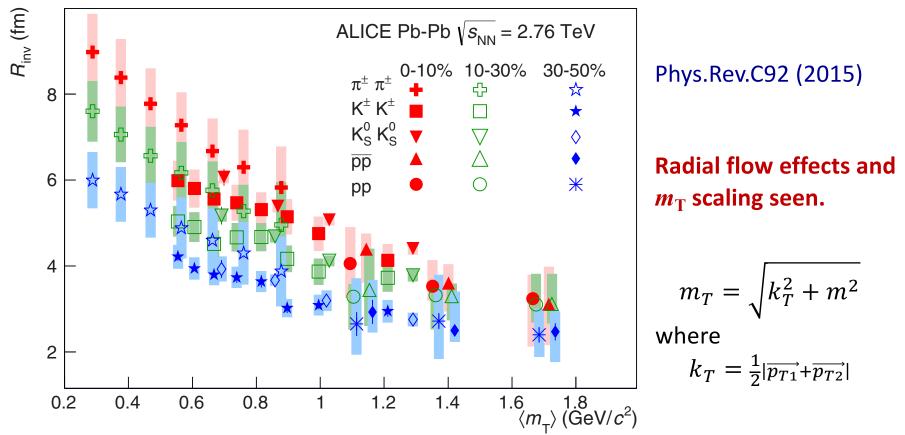
$$C(k^*) = \frac{A(k^*)}{B(k^*)}$$

Where $A(k^*)$ is the measured distribution of boson pairs from the same event, and $B(k^*)$ is the reference distribution of boson pairs from mixed events.

One extracts R and λ parameters from the data by fitting the Lednicky equation to this experimental $C(k^*)$

The LHC ALICE Experiment has published three femtoscopy papers using K⁰_sK⁰_s pairs to extract geometric information about the collision interaction region:

□ 7 TeV pp → $K^0{}_SK^0{}_S$ □ 2.76 TeV Pb-Pb → $K^0{}_SK^0{}_S$, K[±]K[±], ππ, pp □ 2.76 TeV Pb-Pb → 3D $K^0{}_SK^0{}_S$, K[±]K[±] Phys.Lett.B717 (2012) Phys.Rev.C92 (2015) Phys.Rev.C96 (2017)



K⁰_SK[±] femtoscopy

Pair-wise interactions present (or absent) for K⁰_sK[±] pairs

 \succ non-identical pairs \rightarrow no quantum statistics

 \succ K⁰_s is uncharged \rightarrow no Coulomb interaction

- \succ f₀(980) resonance is neutral \rightarrow no f₀(980) strong interaction
- > $a_0(980)$ resonance is isospin = 1 → $a_0(980)$ strong interaction should be present for both $K_s^0 K^+$ and $K_s^0 K^-$ pairs

$\rightarrow K^0_s K^{\pm}$ femtoscopy selects for the $a_0(980)^{\pm}$ as the FSI

Version of R. Lednicky equation used to extract (R, λ) for K⁰_sK[±]

R. Lednicky and V.L. Lyuboshits, Sov. J. Nucl. Phys. 35 (1982)

$$C(k^*) = 1 + \frac{\lambda \alpha}{2} \left[\left| \frac{f(k^*)}{R} \right|^2 + \frac{4 \Re f(k^*)}{\sqrt{\pi R}} F_1(2Rk^*) - \frac{2 \Im f(k^*)}{R} F_2(2Rk^*) \right] + \Delta C$$

No quantum statistics
term or symmetrization

Since
$$|K_{S}^{0}\rangle = \frac{1}{\sqrt{2}} (|K^{0}\rangle + |\overline{K^{0}}\rangle) \rightarrow \alpha = \frac{1}{2}$$
, assuming no asymmetry

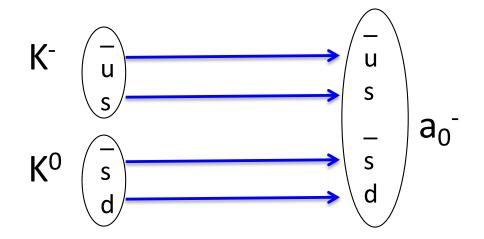
$$f(k^*) = \frac{\gamma_{a0 \to K\overline{K}}}{m_{a0}^2 - s - i\gamma_{a0 \to K\overline{K}}k^* - i\gamma_{a0 \to \pi\eta}k_{\pi\eta}}$$

Ref	m_{f_0}	$\gamma_{f_0K\bar{K}}$	$\gamma_{f_0\pi\pi}$	m_{a_0}	$\gamma_{a_0 K \bar{K}}$	$\gamma_{a_0\pi\eta}$
[15, 16]	0.967	0.34	0.089	1.003	0.8365	0.4580

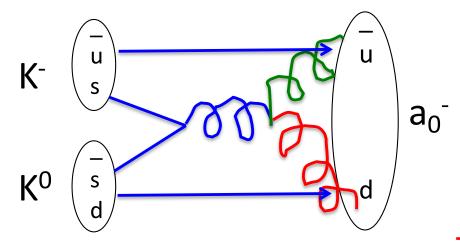
The f_0 and a_0 masses and coupling parameters used in the present analysis, all in GeV.

[15] N. N. Achasov and A. V. Kiselev, "The New analysis of the KLOE data on the phi \rightarrow eta pi0 gamma decay," *Phys. Rev.* D68 (2003) [16] ALICE Collaboration, K. Mikhaylov, "K+K- correlations in Pb-Pb collisions at VsNN = 2.76 TeV by ALICE at the LHC," *Phys. Part. Nucl. (WPCF 2019, Dubna)* (2020) 5.02 TeV pp $\rightarrow K_S^0 K_S^0 = 1$

Two scenarios for FSI of $K^0K^- \rightarrow a_0(980)^- \rightarrow \begin{cases} K^0K^- \\ \eta\pi^- \end{cases}$ Tetraquark vs. Diquark



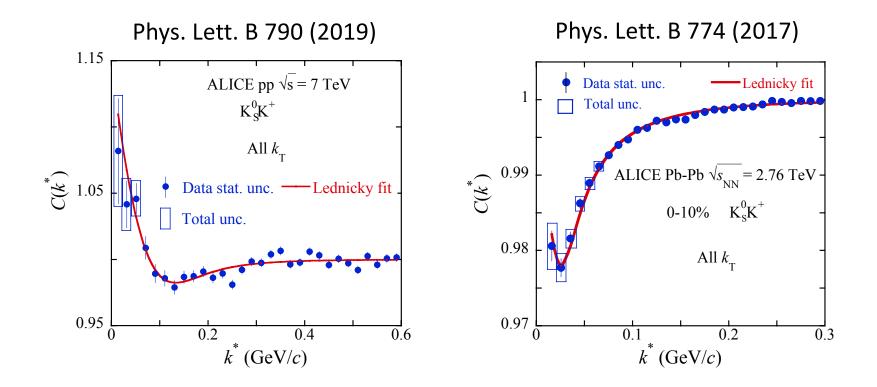
Tetraquark formation is a 1st-order process that proceeds through the direct transfer of existing quarks to the a_0^- from the collision of K⁰K⁻



Diquark formation is a higher-order process requiring the annihilation of the strange quarks in the K⁰K⁻ collision and transfer of energy via gluons to a₀⁻

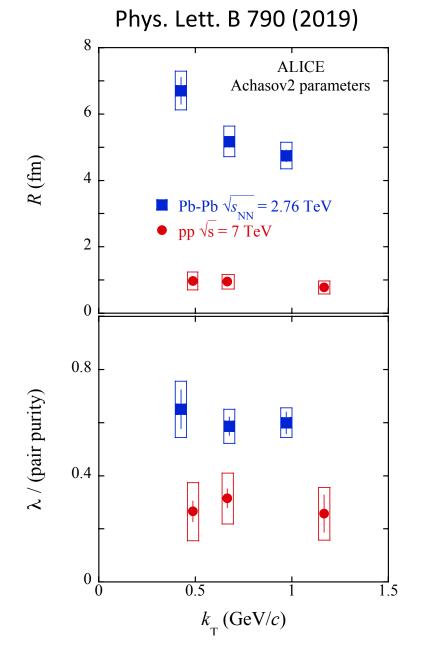
Can we see a signature of Tetraquark vs. Diquark in femtoscopy? <u>11</u>

Examples of K⁰_SK[±] correlation functions from ALICE with Lednicky fits



The Lednicky equation with the assumption of an $a_0(980)$ FSI models the different shapes of the measured correlation functions well for both large and small systems for $K^0_s K^{\pm}$ correlations!

ALICE results for $K^{0}_{s}K^{\pm}$ femtoscopy in pp and Pb-Pb collisions



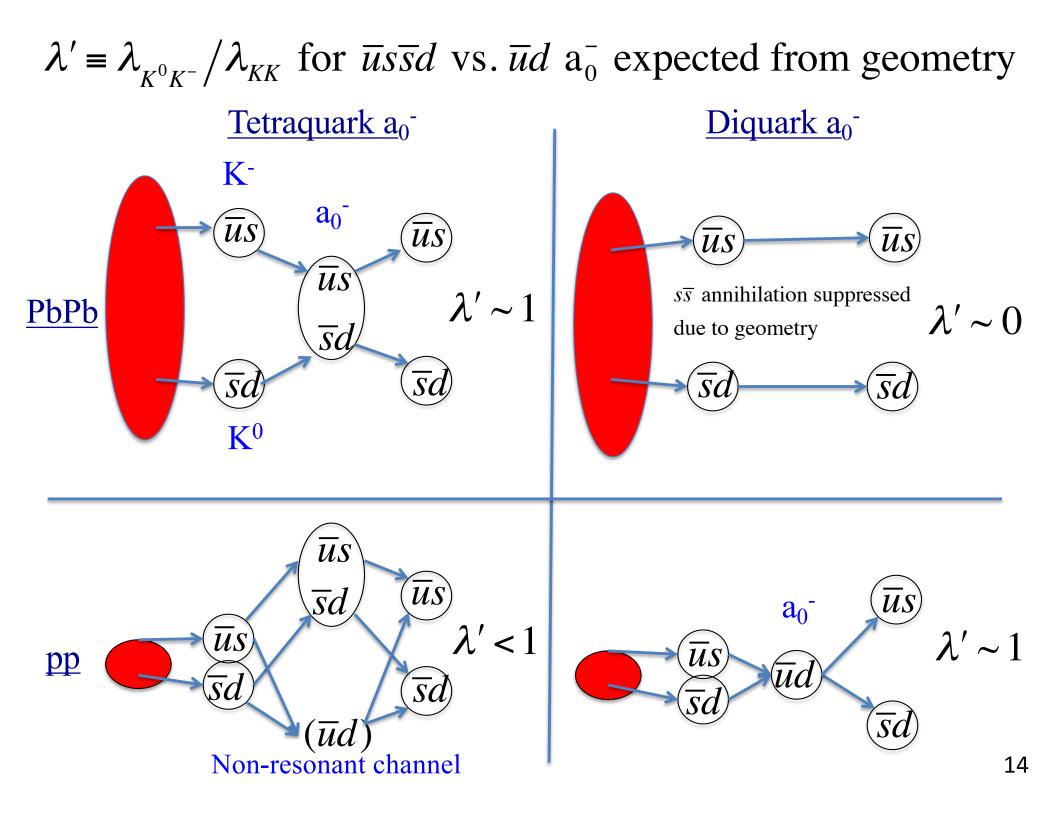
Observations for R:

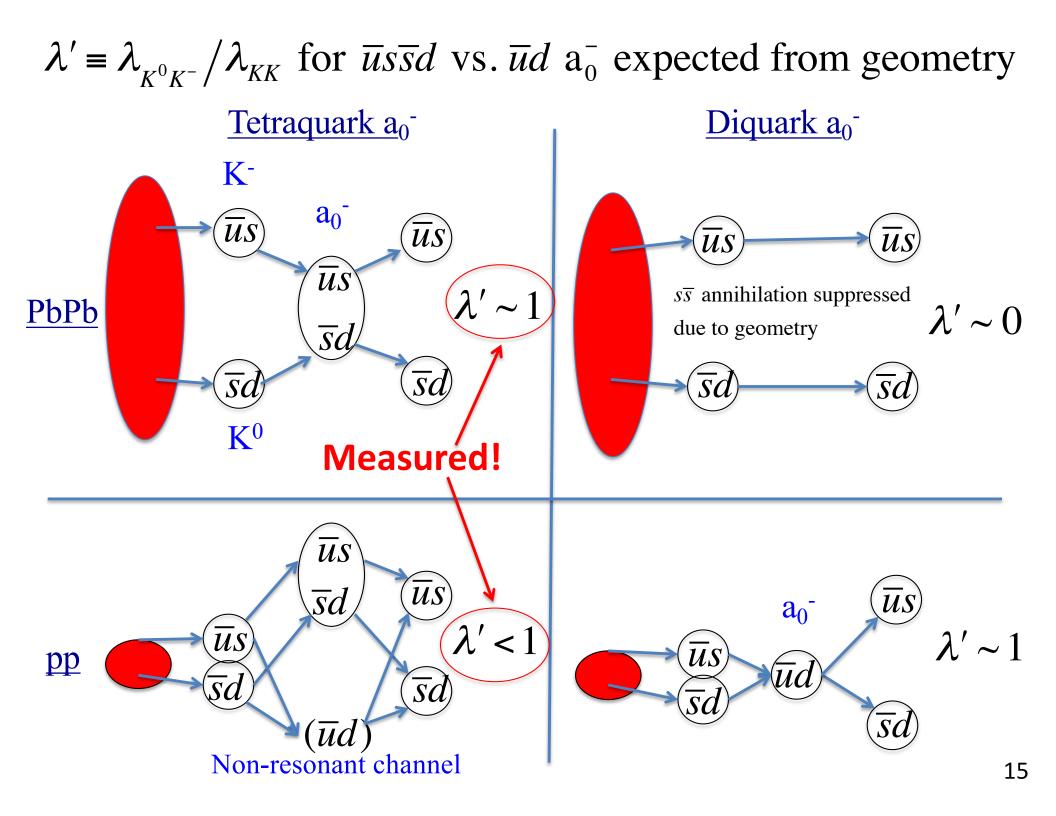
- R(Pb-Pb) > R(pp)
- > R(Pb-Pb) ~ 5-6 fm, R(pp) ~ 1 fm, both as expected from $r_0A^{1/3}$
- ➢ For Pb-Pb, R decreases significantly for increasing k_T, as expected for hydrodynamic flow effects
- > For pp, R is not sensitive to changes in k_T as expected since flow mostly not present for pp

Observations for λ :

- $\succ \lambda$ (Pb-Pb) > λ (pp)
- > λ (Pb-Pb) ~ 0.6, λ (pp) ~ 0.3
- > For Pb-Pb, λ is about the same as
- is measured for K⁰_SK⁰_S

> For pp, λ is also significantly less than what is measured in pp for $K^0{}_sK^0{}_s$





Summary

➤ $K_{S}^{0}K^{\pm}$ femtoscopic analyses in $\sqrt{s_{NN}} = 2.76$ TeV Pb-Pb and $\sqrt{s} = 7$ TeV pp collisions from ALICE were shown

> Main physics take-aways from the $K^0_S K^{\pm}$ analyses:

1) The extracted R parameters are as expected in Pb-Pb and pp collisions

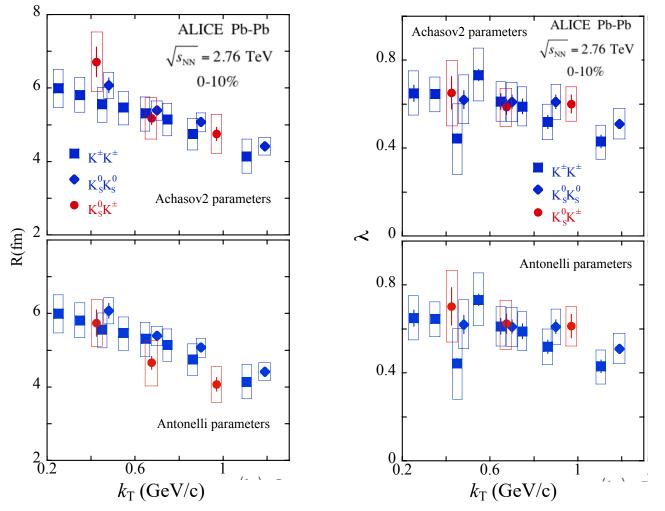
2) $\lambda(pp) < \lambda(Pb-Pb)$, whereas $\lambda(Pb-Pb)$ agrees with the values extracted in $K^{0}{}_{S}K^{0}{}_{S}$ measurements

3) A simple geometric model used to explain the results presented in 2) is suggestive of the $a_0(980)$ being a tetraquark state.

Backup slides

Results for R and λ from 2.76 TeV Pb-Pb for K⁰_SK[±] vs. K⁰_SK⁰_S and K[±]K[±]

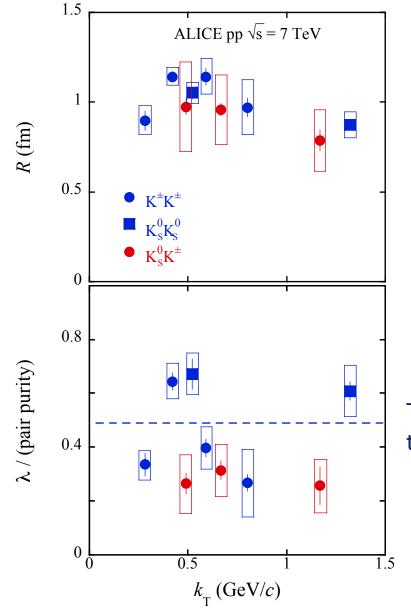
ALICE Collaboration, S. Acharya et al., Phys. Lett. B 774 (2017)



* $K_{S}^{0}K^{\pm}$ R and λ agree with identical kaon results best for Achasov parameters * $\lambda < 1$ due to long-lived resonance decay (e.g. $K^{*} \rightarrow K\pi$, estimate $\lambda^{\sim}0.55$ from K^{*}) Agreement of $K_{S}^{0}K^{\pm}\lambda$ with identical kaons \rightarrow FSI goes solely through a₀ channel \rightarrow no non-resonant channel present

Results for R and λ from 7 TeV pp for $K^0{}_SK^\pm$ vs. $K^0{}_SK^0{}_S$ and $K^\pm K^\pm$

ALICE Collaboration, S. Acharya et al., Phys. Lett. B790 (2019)



* The R values all agree within uncertainties

 $* \ \lambda(\mathsf{K^0}_\mathsf{S}\mathsf{K^\pm}) < \lambda(\mathsf{K^0}_\mathsf{S}\mathsf{K^0}_\mathsf{S})$

The dashed line is the average of the identical-kaon λ parameters.