Update on the long term FD monitoring using stars

A. Segreto11/02/2020

Checking the FD absolute calibration with reference stars

Coihueco Bay 4

An independent end-to-end verification of the calibration status of the FD telescopes can be obtained by comparing the observed star signal to the expected star flux vs. airmass

The aereosol optical depth and a corrective normalization factor are obtained by fitting the simulated data to the star flux obtained from the variance data

Monitoring by different stars

- Any star crosses nighttime the FD field of view only for a few months per year
- Data from different stars (different luminosity and different spectral class) can be combined to monitor the FD calibration status in different period of the year
- □ There are however not enough bright reference stars to monitor the FD calibration without temporal gaps

Star selection in the FoV of Coihueco Bay 4

Name	Туре	Offset[°]	Umag	R.A.[h]		Name	Туре	Offset[°]	Umag	R.A.[h]
1) Pi Cet 2) Mu Lep	B7IV B9III	+4.9 +2.6	3.7 2.8	2.7 5.2	10) 11)	Omi2 CMa Gienah	B3Iab B8III	-5.1 +1.2	2.1 2.1	7.1 12.3
3) Lam Lep 4) Nihal	BO.5IV G3III	+5.6	3.0 3.6	5.3 5.5	12) 13)	Algorab Zuben Elgenubi	89.5V A3IV	+2.3	2.8 3.0	12.5 14.8
5) Arneb	FOI	+0.9	3.0	5.5	14)	Graffias	B1V	-1.0	1.7	16.1
6) Gam Lep 7) Mirzam	F6V B1TTT	-3.7 +0.8	4.1	5.7 6.4	15) 16)	Ome Sco Sabik	B1V A2V	-1.9 +3.0	3.1	16.1 17.2
8) Ksi01 CMa	B0.7IV	-4.7	3.1	6.5	17)	Polis	B8Iab(e)	-2.3	3.6	18.2
9) Sirius	ATA	+2.1	-1.5	6.8	18)	SKat	Азур	+2.9	3.4	22.9

To obtain a number of stars sufficient to continuously monitor the FD calibration status along the year we select stars with magnitude in the U band > 4 that cross the central part of FD field (+/- 6° from the telescope center)

Coihueco bay 4

 Stars of different spectral type and different luminosity show coherent temporal behavior (spread < 2% std. dev.) along the 15 year of FD operation

A few stars are used as absolute reference, the other are rescaled to match the reference stars

Coihueco bay 5

□ Long term evolution of Coihueco bay 5 calibration monitored by 19 stars. A significant increase in efficiency is detected after the dismount, clean and realignment of the mirrors

Heat bay 3

Long term evolution of HEAT bay 3 calibration, monitored by 17 stars

Heat bay 2

Long term evolution of HEAT bay 2 calibration monitored by 17 stars

Summary

- We have analyzed FD signals from several stars of different spectral type and different luminosity (Umag > 4) and found they show coherent (< 2% std. dev.) long term evolution across the 15 year of FD operation.
- Results obtained show that by the combined analysis of several stars it is possible to monitor the calibration status of individual FD telescopes continuously along the year and correct for any long-term drift not monitored by the Cal A.