COSMIC RAYS

Dr. Eduardo Moreno Barbosa Benemérita Universidad Autónoma de Puebla

Reunión de la división de rayos cósmicos, Puebla. Noviembre, 2019

What are cosmic rays?

Cosmic rays are high energy charged particles Protons, nuclei, electrons, positrons Traveling at nearly the

speed of light Striking the Earth from all

directions

Composition

89% protons (hydrogen nuclei)

10% Helium nuclei

1 % Electrons, heavier elements

electron

proton

Origin

- Extra-galactic cosmic rays originate and are accelerated by supernovae explosions.
- The Sun also emits cosmic rays as solar flares

Discovery

- Cosmic rays were first observed by Victor Hess in 1912.
- He detected radiation in the upper atmosphere using an electroscope in a balloon.
- He repeated the experiment during solar eclipse to determine this radiation was not coming entirely from the sun.
- Hess was awarded the Nobel Prize in 1936 for this discovery.

Energy Spectrum

A Cosmic Ray Shower

- Cosmic ray particles entering the Earth's atmosphere collide (mainly) with oxygen and nitrogen nuclei
- This high energy collisions produce a cascade of lighter particles, a so-called *air shower*.

How do we measure the cosmic rays?

 We detect the shower products that make it through the atmosphere down to the Earth's surface.

Plastic Scintillators

Detectores

Scintillation Detectors

As a charged particle traverses certain materials exciting the atoms (or molecules) a small fraction of the energy is released as photons when they deexcite. These materials are called scintillators.

Scintillation light can be used to:

- Signal the presence of a charged particle
- Measure the time it takes for a charged particle to travel a known distance: *time of flight technique*
- Measure energy since the amount of light is proportional to energy deposition

There are different types of materials that scintillate: Inorganic crystals (Nal, Csl, BGO) Organic molecules (Anthracene) Organic plastics (see table on next page) Organic liquids (toluene, xylene) Our atmosphere (nitrogen)

Organic scintillators properties

Туре	Light ^e output	λ_{\max}^{b} (nm)	Attenuation ^c length (cm)	Risetime (ns)	Decay ^d time (ns)	Pulse FWHM (ns)
NE 102A	58-70	423	250	0.9	2.2-2.5	2.7-3.2
NE 104	68	406	120	0.6-0.7	1.7-2.0	2.2-2.5
NE 104B	59	406	120	1	3.0	3
NE 110	60	434	400	1.0	2.9-3.3	4.2
NE 111	40-55	375	8	0.13-0.4	1.3-1.7	1.2-1.6
NE 114	42-50	434	350-400	~1.0	4.0	5.3
Pilot B	60-68	408	125	0.7	1.6-1.9	2.4-2.7
Pilot F	64	425	300	0.9	2.1	3.0-3.3
Pilot U	58-67	391	100-140	0.5	1.4-1.5	1.2-1.9
BC 404	68	408		0.7	1.8	2.2
BC 408	64	425		0.9	2.1	~2.5
BC 420	64	391	_	0.5	1.5	1.3
ND 100	60	434	400		3.3	3.3
ND 120	65	423	250		2.4	2.7
ND 160	68	408	125		1.8	2.7

^a Percentage of anthracene.

^b Wavelength of maximum emission.

^c 1/e length.

^d Main component.

Typical cost 1\$/in²

Photomultiplier Tubes (PMT's)

PMT Properties

In situations where a lot of light is produced (>10³ photons) a photodiode can be used in place of a PMT

Properties of phototubes:

- Very high gain; $10^6 10^8$
- Single photon counting
- Off the shelf item with a wide variety of features (size, gain, sensitivity)
- Sensitive to magnetic fields (shield against earth's): use "mu-metal"

Scintillator Counter Example

Some typical parameters for a scintillation counting system

Average energy loss in scintillator	2 Mev/cm	
Scintillation efficiency	1 photon/100 eV	
Collection efficiency	0.1	
Quatntum efficiency of PMT photocathode	0.25	
PMT gain	10 ⁶	
PMT transit time	50 ns	
Input impedance of counting circuit	50 Ω	

What is the amplitude of the electrical pulse from a 1-cm thick plastic scintillator?

Suppose a charged particle passes perpendicularly through this counter:

- 1. It deposits ~ 2 MeV, that produces ~ $2x10^4$ photons
- 2. Approximately $2x10^3$ of them reach the PMT
- 3. They produce ~ 500 photo-electrons
- 4. That multiply to 5x10⁸ electrons at the PMT output. They represent a charge of 8x10⁻¹¹C
- 5. Since this charge is collected in 5×10^{-8} s the current pulse is

 $I = (8 \times 10^{-11} \text{ C}) / (5 \times 10^{-8} \text{ s}) = 1.6 \times 10^{-3} \text{ A}$

6. Or by Ohm's law

V = I R = $(1.6 \times 10^{-3} \text{A}) (50 \Omega) = 80 \text{ mV},$

large enough to see with a scope.