$$
\gamma \text {-ray detectors (II): }
$$

(1) Tools \& stats; (2) Skymaps; (3) discussion.

Alberto Carramiñana (INAOE)

Tonantzintla, 27 de noviembre de 2019

Some tools I use

- Statistics: the basic and the needed. Poisson, gauss, χ^{2}, likelihood.
- Python: I am not an expert; just a recycled Fortranosaurus.
- Anaconda installation, spyder editor.
- Tasks: open, close, read files...
- Packages: numpy (scipy), matplotlib, healpy.

More than just presenting I would like to discuss some topics.

Poisson distribution

The probability of counting k events given an average μ, given by

$$
p_{k}=\frac{\mu^{k}}{k!} e^{-\mu} .
$$

One proves,

$$
\sum_{k=0}^{\infty} p_{k}=1, \quad\langle k\rangle=\mu, \quad \sigma(k)=\sqrt{\left\langle k^{2}\right\rangle-\langle k\rangle^{2}}=\mu
$$

Normal (Gaussian) distribution

Limit of the central limit theorem. Probability density, of mean μ and standard deviation σ,

$$
\begin{equation*}
g(x)=\frac{1}{\sqrt{2 \pi} \sigma} \exp \left\{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^{2}\right\}, \quad-\infty<x<+\infty . \tag{1}
\end{equation*}
$$

The cumulative distribution is given by the error function,

$$
\begin{equation*}
\operatorname{erf}(x)=\frac{2}{\sqrt{\pi}} \int_{0}^{x} e^{-t^{2}} d t \tag{2}
\end{equation*}
$$

such that

$$
G(x) \equiv P(>x)=\frac{1}{2}-\frac{1}{2} \operatorname{erf}\left(\frac{x-\mu}{\sigma \sqrt{2}}\right) .
$$

Given a probability P (confidence level), the bound on x is,

$$
x=\mu+(\sigma / \sqrt{2}) \operatorname{erf}^{-1}(2 G-1)
$$

Gaussian confidence

Beware of the two sides...

s	$\operatorname{erf}(s / \sqrt{2})$	$G(<s)$	$G(>s)$
1	0.6827	0.8413	0.1587
1.645	0.9000	0.9500	0.0500
2	0.9545	0.9772	0.0228
2.326	0.9800	0.9900	0.0100
3	0.9973	0.9987	0.0013
5	1.0000	1.0000	2.867×10^{-7}

Cuadro: Significances and probabilities for $s=(x-\mu) / \sigma$. The function $\operatorname{erf}(s \sqrt{2})$ gives the probability to be between $\pm s$.

Likelihood and maximization

Likelihood is defined as

$$
\mathcal{L}=\prod_{j} p_{j}
$$

Assume gaussian probabilities with constant mean and deviation. Then

$$
\ln (\mathcal{L})=\sum_{j}-\frac{1}{2}\left(\frac{x_{j}-\mu}{\sigma}\right)^{2}-\ln (\sqrt{2 \pi} \sigma) \rightarrow \chi^{2}
$$

Maximizing $\ln (\mathcal{L})$ becomes minimizing χ^{2}. For a single parameter,

$$
\frac{d}{d \mu} \ln (\mathcal{L})=0 \Rightarrow \frac{d}{d \mu}\left\langle\left(x_{j}-\mu\right)^{2}\right\rangle=0 \Rightarrow \mu=\left\langle x_{j}\right\rangle .
$$

We also want to determine the uncertainty in $\mu \ldots$

Generic χ^{2} minimization

Consider datapoints $\left\{x_{i} ; y_{i}\right\}$ with experimental error δy_{i}; and $f\left(x_{i}, q_{k}\right)$ a fitting function of parameters q_{k}. For gaussian statistics maximum likelihood is χ^{2} minimization,

$$
\begin{equation*}
\operatorname{mín}\left[\chi^{2}=\sum_{i}\left(\frac{y_{i}-f\left(x_{i}, q_{k}\right)}{\delta y_{i}}\right)^{2}\right] \Rightarrow \frac{\partial \chi^{2}}{\partial q_{k}}=0 \tag{3}
\end{equation*}
$$

Contours in fit parameter space are given by the second order expansion around the best parameters, $\left\{q_{k}^{0}\right\}$,

$$
\begin{equation*}
\chi\left(q_{k}\right)=\chi_{0}+\frac{1}{2} \sum_{\ell, k}\left(\frac{\partial^{2} \chi}{\partial q_{\ell} \partial q_{k}}\right)_{0}\left(q_{\ell}-q_{\ell}^{0}\right)\left(q_{k}-q_{k}^{0}\right)+\ldots \tag{4}
\end{equation*}
$$

using $\left(\partial \chi^{2} / \partial q_{k}\right)_{0}=0$.

Linear χ^{2} minimization (1)

As a practical example, consider the linear fit, $f(x)=a x+b$, leading to the variance weighted least squares expression,

$$
\begin{aligned}
\frac{\partial \chi^{2}}{\partial b}=0 & \Rightarrow\left\langle-\frac{2}{\delta y}\left(\frac{y-a x-b}{\delta y}\right)\right\rangle=0 \\
& \Rightarrow\left\langle\frac{y}{\delta y^{2}}\right\rangle=a\left\langle\frac{x}{\delta y^{2}}\right\rangle+b\left\langle\frac{1}{\delta y^{2}}\right\rangle \\
\frac{\partial \chi^{2}}{\partial a}=0 & \Rightarrow\left\langle-\frac{2}{\delta y}\left(\frac{y-a x-b}{\delta y}\right) x\right\rangle=0 \\
& \Rightarrow\left\langle\frac{y x}{\delta y^{2}}\right\rangle=a\left\langle\frac{x^{2}}{\delta y^{2}}\right\rangle+b\left\langle\frac{x}{\delta y^{2}}\right\rangle
\end{aligned}
$$

Linear χ^{2} minimization (1)

The solution

$$
\begin{align*}
a_{0} & =\frac{<y x / \delta y^{2}>-<y / \delta y^{2}><x / \delta y^{2}>}{<x^{2} / \delta y^{2}>-<x / \delta y^{2}>^{2}} \\
b_{0} & =\left\langle y / \delta y^{2}\right\rangle-a\left\langle x / \delta y^{2}\right\rangle \tag{5}
\end{align*}
$$

Taking the statistical errors in the determination of these two parameters as the contour where the reduced χ^{2} increases by one ${ }^{1}$, the error ellipse is given by,
$\left\langle\frac{x^{2}}{\delta y^{2}}\right\rangle\left(a-a_{0}\right)^{2}+2\left\langle\frac{x}{\delta y^{2}}\right\rangle\left(a-a_{0}\right)\left(b-b_{0}\right)+\left\langle\frac{1}{\delta y^{2}}\right\rangle\left(b-b_{0}\right)^{2}=1$.
The individual errors are given by the horizontal and vertical widths of the ellipse,

$$
\Delta a=\left\langle\frac{x^{2}}{\delta y^{2}}\right\rangle^{-1 / 2}, \quad \Delta b=\left\langle\frac{1}{\delta y^{2}}\right\rangle^{-1 / 2} .
$$

${ }^{1}$ reduced χ^{2} is $\chi^{2} / n_{\text {dof }}$ with $n_{\text {dot }}=n-p$ for n data points and p fit

Likelihood of photon counting data ${ }^{2}$

Likelihood defined as

$$
\mathcal{L}=\prod_{j} p_{j}, \quad \text { with } \quad p_{j}=\frac{\theta_{j}^{n_{j}}}{n_{j}!} e^{-\theta_{j}}
$$

for photon counting data. θ_{j} is the model at pixel j, n_{j} are the counts at pixel j. Index j can be multidimensional. For a model θ,

$$
\ln (\mathcal{L})=\sum_{j} n_{j} \ln \left(\theta_{j}\right)-\sum_{j} \theta_{j}
$$

neglecting the last term. A model can be made of a background, background point sources and a test source (a),

$$
\theta_{j}=B+\sum_{k} c_{k} \operatorname{psf}\left(\hat{r}_{k}, j\right)+c_{a} \operatorname{psf}\left(\hat{r}_{a}, j\right)
$$

[^0]
Likelihood of photon counting data (2)

Likelihood is to be maximized relative to a vector of parameters, say $\Lambda=\left\{B, c_{k}, c_{a}\right\}$, where hypothesis H_{0} ignores c_{a}, while hypothesis H_{1} considers c_{a}. Maximization is now more complex, $D=0$, with

$$
D_{i}=\frac{\partial \ln \mathcal{L}}{\partial \Lambda_{i}}=0
$$

and errors in parameters are given by the Hessian,

$$
\mathcal{H}_{i j}=-\frac{\partial^{2} \ln \mathcal{L}}{\partial \Lambda_{i} \partial \Lambda_{j}} \Rightarrow \sigma\left(\Lambda_{i}\right)=\left(\mathcal{H}^{-1}\right)_{i i}^{1 / 2}
$$

A decrease in $\Delta \ln \mathcal{L}=-1 / 2$ from maximum corresponds to 68% or $1-\sigma$ confidence.

Skymaps and HEALPix

- Celestial maps are generally referred to celestial (North Pole \& vernal point) or galactic coordinates (NGP, Galactic center). See arXiv 1010.3773 for transformation between them.
- HEALPix: Hierarchical Equal Area IsoLatitude Pixelization, divides the celestial sphere in a discrete set of equal solid angle elements.
- HAWC uses $N_{\theta}=3 \Rightarrow$ two polar regions + one equatorial band; each divided in four $\Rightarrow N_{\varphi}=4$.

$$
N_{p i x}=12 \times N_{\text {side }}^{2}
$$

with one map per $\mathrm{f}_{\text {hit }}$ bin.
HEALPix: Górski et al. 2005, ApJ 622, 759; healpix.jpl.nasa.gov; healpix.sourceforge.io; healpy@python

HEALPix

$$
\begin{aligned}
& N_{\theta}=3 \\
& N_{\varphi}=4 \\
& \cos \theta_{\star}=2 / 3
\end{aligned}
$$

Figura: HAWC scheme is for $N_{\theta}=3, N_{\varphi}=4 \Rightarrow N_{p i x}=12 \times N_{\text {side }}^{2}$.

HEALPix

Figura: HAWC uses RING scheme.

HEALPix

HEALPIX-4 pixels number in NESTED scheme

Figura: HAWC uses RING scheme.

How to simulate HAWC data?

- Produce a python script to mimic a skymap, or a region around an injected source?
- How many degrees in the celestial sphere? How many degrees in the 2 HWC skymap?
- Rates in HAWC scale exponentially: half in $\mathcal{B}=0 ; 1 / 4$ in $\mathcal{B}=1$; ... What is the background per (HEALpix) pixel $\left(-20^{\circ} \leq \delta \leq+60^{\circ}\right)$ for each $\mathrm{f}_{\text {hit }}$ bin?
- Background generation in python.
- Dependence with declination? Look at HAWC monitoring plots....
- HAWC response? Cuts, energy intervals, Crab counts $\left(N(E) \propto E^{-2.63}\right)$.

HAWC monitoring

Figura: Rate as function of zenith and azimuth.

HAWC monitoring

Figura: Rate projected in the sky.

[^0]: ${ }^{2}$ One reference: Mattox et al. 1996, ApJ 461, 396.

