

Lorentz invariance violation in astroparticle physics: subluminal and superluminal tests

Humberto Martínez-Huerta, IFSC-USP, Brazil

November 28, 2019

I. Introduction

- II. LIV-signatures for Astroparticle tests
 - i. Threshold shifts
 - ii. Photon Decay
 - iii. Photon Spliting
 - iv. Energy-dependent time delay
- III. Limits: astrophysical photons

- Phenomenology
- Experiment
- Future

I. Introduction

II. LIV-signatures for Astroparticle tests

- i. Threshold shifts
- ii. Photon Decay
- iii. Photon Spliting
- iv. Energy-dependent time delay
- III. Limits: astrophysical photons

- Phenomenology
- Experiment
- Future

Fundamental Forces of Nature

- SM & GR: the best theories describing the 4-fundamental Forces.
- No conflict with predictions from either of them.
- They are fundamentally different.

New Physics involves new features, such as:

- Higher dimensions of space and time
- Brane world scenarios
- □ Non-commutative geometries
- **□** ...
- The law of relativity might not hold exactly at all energy scales
 - ... LI may not be an exact symmetry of Nature

Lorentz Invariance Violation (LIV)

Like any other **fundamental principle** exploring the limits of validity of **LI** has been an essential motivation for theoretical and experimental research

Symmetries: LIV

 $c = 3 \times 10^8 \text{ m/s}$

 $c \neq 3 \times 10^8 \text{ m/s}$ $c' = (1 \pm \delta)c$

Fundamental Energy Scale

 $E_{QG}: E_{Pl}: E_{LIV}$

 $c' = \left| 1 \pm f\left(\frac{E_{\gamma}}{E_{\rm LW}}\right) \pm \dots \right| c$

Symmetries: LIV

 $c = 3 \times 10^8 \text{ m/s}$

Fundamental Energy Scale

 $E_{QG}: E_{Pl}: E_{LIV}$

n = 0, 1, 2, ...

Astroparticle Physics: Lab to test Fundamental Physics

Astroparticle-Lab : Fundamental Physics

Pair production threshold shifts

Energydependent time delay

> Photon decay

Energydependent time delay

LIV limits (Meeting DRC-2018)

Pair production threshold shifts

Energydependent time delay

> Photon decay

Energydependent time delay

Pair production threshold shifts

Energydependent time delay

Photon splitting

Photon decay

Energydependent time delay

Pair production threshold shifts

Energydependent time delay

Photon splitting

Photon decay

Energydependent time delay

Pair production threshold shifts

Energydependent time delay

Photon splitting

Photon decay

Energydependent time delay

Outline

- I. Introduction
- **II.** LIV-signatures for Astroparticle tests
 - i. Threshold shifts
 - ii. Photon Decay
 - iii. Photon Spliting
 - iv. Energy-dependent time delay
- III. Limits: astrophysical photons

Phenomenology

- Experiment
- Future

Test of Lorentz invariance violation

Test of Lorentz invariance violation

Pair Production (PP)

Optical depth:

$$\tau_{\gamma}(E_{\gamma}, z, \eta) \rightarrow \tau_{\gamma}(E_{\gamma}, z, \eta, n, E_{LIV}^{(n)})$$

$$\epsilon_{th}^{\text{LIV}} = \frac{m_e^2}{4E_{\gamma}K(1-K)} - \frac{\delta_{\gamma,n}E_{\gamma}^{n+1}}{4}$$

Allowed PP region changes with the LIV parameter and the Energy

Martínez, Lang, and Souza arXiv:1901.03205 Lang, Martinez & De Souza ApJ 853, no.1, 23 (2018) More photons!!

$$a(E,z) = e^{-\tau}(E,z)$$

The intensity of the LIV effect depends on

E_γ: The energy of the γ-ray
E_{LIV}: The LIV energy scale
z: The distance of the source.

Martínez, Lang, and Souza arXiv:1901.03205

Outline

- I. Introduction
- **II.** LIV-signatures for Astroparticle tests
 - i. Threshold shifts
 - ii. Photon Decay
 - iii. Photon Spliting
 - iv. Energy-dependent time delay
- III. Limits: astrophysical photons

- Phenomenology
- **Experiment**
- Future

EBL-Attenuation + LIV

	2σ	3 σ	5 σ
n=1	$2.8 \times 10^{28} \text{ eV} (2.29 \times \text{E}_{\text{Planck}})$	$1.9 \times 10^{28} \text{ eV} (1.6 \times \text{E}_{\text{Planck}})$	$1.04 \times 10^{28} \text{ eV} (0.86 \times E_{\text{Planck}})$
n=2	$7.5 \times 10^{20} \text{ eV}$	$6.4 \times 10^{20} \text{ eV}$	$4.7 \times 10^{20} \text{ eV}$

Lorentz and Brun for the HESS collaboration, RICAP16, 2016.

ApJ Vol 870, 2 arXiv:1901.05209

LIV Horizon

... one source?

The most updated dataset composed of 111 energy spectra of 38 different sources

LIV Horizon

...Why use only one source?

The most updated dataset composed of 111 energy spectra of 38 different sources

only 18 spectra from 6 sources
have the potential to show LIV effects
(constraint LIV)

LIV Horizon

...Why use only one source?

The most updated dataset composed of 111 energy spectra of 38 different sources

only 18 spectra from 6 sources have the potential to show LIV effects (constraint LIV)

Source	Redshift	Experiment	Spectrum	Reference
Markarian 421	0.031	HEGRA	1999–2000	[48]
			2000-2001	[48]
		HESS	2000	[49]
		VERITAS	2006-2008	[50]
			(low)	
			2006-2008	[50]
			(mid)	
		TACTIC	2005-2006	[51]
			2009–2010	[52]
Markarian 501	0.034	TACTIC	2005-2006	[53]
		ARGO-YBJ	2008-2011	[54]
			2011 (flare)	[54]
		HESS	2014 (flare)	[37]
1ES 1959 + 650	0.048	Whipple	2002 (flare)	[55]
		HEGRA	2002 (low)	[56]
			2002 (high)	[56]
H 1426 + 428	0.129	HEGRA	1999–2000	[57]
1ES 0229 + 200	0.1396	HESS	2005-2006	[58]
		VERITAS	2010-2011	[59]
1ES 0347-121	0.188	VERITAS	2006	[60]

	Franceschini		Dominguez		Gilmore				
	2σ	3σ	5σ	2σ	3σ	5σ	2σ	3σ	5σ
$E_{\rm LIV}^{(1)} \left[10^{28} \ {\rm eV} \right]$	12.08	9.14	5.73	6.85	5.62	4.17	14.89	9.80	4.74
$E_{\rm LIV}^{(2)} \left[10^{21} \ {\rm eV} \right]$	2.38	1.69	1.42	1.56	1.40	1.14	2.17	1.78	1.31

- Choices of the EBL models
- Model of the intrinsic spectrum
- Energy resolution
- Selection of spectra

10

ansity in [1 / cm ^ 3 / e 0 2

den ton

°44 10-3 EBL

10-4 10-4

10

10-2

10-1 Energy (eV)

100

=0.05; Franceschini et al. (2008) =0. 05; Dominguez et al. (2011)

^{z=0.05;} Kneiske & Dole (2010)

^{0. 05;} Gilmore et al. (2012) == 0. 20; Gilmore et al. (2012) z=1.50; Gilmore et al. (2012)

Pair production threshold shifts

Energydependent time delay

> Photon decay

Energydependent time delay

Pair production threshold shifts

Energydependent time delay

Photon splitting

Photon decay

Energydependent time delay

Outline

- I. Introduction
- II. LIV-signatures for Astroparticle tests
 - i. Threshold shifts
 - ii. Photon Decay
 - iii. Photon Spliting
 - iv. Energy-dependent time delay
- III. Limits: astrophysical photons

- Phenomenology
- Experiment
- Future

Current IACT

Imaging Atmospheric Cherenkov Telescopes

The Array Locations

CTA Consortium

August 2019

Pair Production (PP)

Optical depth:

$$\tau_{\gamma}(E_{\gamma}, z, n) \rightarrow \tau_{\gamma}(E_{\gamma}, z, \eta, n, E_{LIV}^{(n)})$$

$$\epsilon_{th}^{\text{LIV}} = \frac{m_e^2}{4E_\gamma K(1-K)} - \frac{\delta_{\gamma,n} E_\gamma^{n+1}}{4}$$

Allowed PP region changes with the LIV parameter and the Energy

Martínez, Lang, and Souza arXiv:1901.03205 Lang, Martinez & De Souza ApJ 853, no.1, 23 (2018) More photons!!

Simulating a LI signature with CTA

Gamma-ray astronomy Python tools

H. Martínez-Huerta et al. (CTA Consortium) ICRC'19 arXiv:1908.09614

Simulating a LIV signature with CTA

H. Martínez-Huerta et al. (CTA Consortium) ICRC'19 arXiv:1908.09614
Simulating a LIV signature with CTA

H. Martínez-Huerta et al. (CTA Consortium) ICRC'19 arXiv:1908.09614

Testing the frontiers of physics

Gamma rays produce electronpositron pairs when interacting with EBL photons

Exotic processes such as LIV or coupling to axionlike particles could modify the absorption, resulting in characteristic spectral features.

Stay tuned...

https://www.cta-observatory.org/whatpropogation-of-energetic-light-can-tell-us/

LIV limits

Pair production threshold shifts

Energydependent time delay

> Photon decay

Energydependent time delay

LIV limits

Pair production threshold shifts

Energydependent time delay

Photon splitting

Photon decay

Energydependent time delay

I. Introduction

II. LIV-signatures for Astroparticle tests

- i. Threshold shifts
- ii. Photon Decay
- iii. Photon Spliting
- iv. Energy-dependent time delay
- III. Limits: astrophysical photons

Phenomenology

- Experiment
- Future

Photon decay

humbertomh@ifsc.usp.br

(n=0) SME: Phys. Rev. D 96, 116011 (2017)

Photon decay

- I. Introduction
- II. LIV-signatures for Astroparticle tests
 - i. Threshold shifts
 - ii. Photon Decay
 - iii. Photon Spliting
 - iv. Energy-dependent time delay
- III. Limits: astrophysical photons

- Phenomenology
- **Experiment**
- Future

The High Altitude Water Cherenkov

Highest energy sources

-Reported detailed measurements of γ -ray >100 TeV,

-Recent development of advanced energy-reconstruction algorithms, **artificial neural network**

HAWC Collaboration arXiv:1909.08609

PoS ICRC19 723 PoS(ICRC2019)738

⊠Crab ,	
ĭ 2HWC J1825−134,	☑2HWC J2019+367
☑ 2HWC J1839−057,	⊠ 2HWC J2031+415
ĭ 2HWC J1844−032,	2 HWC J1809-190
ĭ 2HWC J1908+063,	□ 2HWCJ1849+001

LIV hard cutoff at some energy Ec in the True spectrum

softened in the observed spectra due to the effects of the detector energy resolution

A profile **log-likelihood** is performed to find the best-fit spectrum model for each source, including a energy cutoff, \hat{E}_c

$$D = 2\ln\left(\frac{\mathscr{L}(\hat{\mathbf{E}}_{c})}{\mathscr{L}(\hat{\mathbf{E}}_{c} \to \infty)}\right)$$

LIV hard cutoff

PoS ICRC19 723 PoS(ICRC2019)738 arXiv:1911.08070 (submitted)

LIV hard cutoff

Source	$\begin{array}{c} E_{\rm c} \\ {\rm TeV} \end{array}$	$_{\rm kpc}^{\rm L}$	$\begin{array}{c} \alpha_0\\ 10^{-17} \end{array}$	$10^{-32} eV^{-1}$	10^{-48}eV^{-2}	$10^{\alpha_{2(3\gamma)}}$ eV ⁻²	$\begin{array}{c} E_{\rm LIV}^{(1)} \\ 10^{31} {\rm eV} \end{array}$	${\mathop{\rm E_{LIV}}\limits_{10^{23}}}{\mathop{\rm eV}\limits^{(2)}}$
eHWC J1825-134	244	1.55	1.75	7.19	295	0.70	1.39	0.58
$ m eHWC~J1907{+}063$	218	2.37	2.2	10.1	462	0.99	0.99	0.47
$ m eHWC~J0534{+}220~(Crab)$	152	2	4.52	29.7	1960	4.01	0.34	0.23
eHWC J2019+368	120	1.8	7.25	60.4	5040	10.1	0.17	0.14
Combined	285	-	1.29	4.51	158	-	2.22	0.8
Crab (HEGRA) 2017 [12]	~ 56	-	-	667	127551	-	.015	.028
Tevatron 2016 [13]	0.442	-	6×10^5	-	-	-	-	-
Crab (HEGRA) 2013 [27]	56	-	40	-	-	-	-	-
RX J1713.7–3946 (HESS) 2008 [15]	30	-	180	-	-	-	-	-
Crab (Themistocle) 1997 [14]	20	-	300	-	-	-	-	-
GRB09510 (<i>Fermi</i> -LAT) 2013 $v > c$ [16]	-	-	-	746	123456790	-	0.0134	0.0009
GRB09510 (<i>Fermi</i> -LAT) 2013 $v < c$ [16]	-	-	-	1075	59171598	-	0.0093	0.0013
Crab (HEGRA) 2019 [17]	75	2	-	-	-	59	-	-

Derived **95%** CL lower limits on Ec and its different LIV coefficients

Source	$\begin{array}{c} E_{\rm c} \\ {\rm TeV} \end{array}$	$_{ m kpc}^{ m L}$	$\begin{array}{c} \alpha_0 \\ 10^{-17} \end{array}$	$10^{-32} eV^{-1}$	$10^{-48} {\rm eV}^{-2}$	$10^{\alpha_{2(3\gamma)}}$ eV ⁻²	$\begin{array}{c} E_{\rm LIV}^{(1)} \\ 10^{31} {\rm eV} \end{array}$	$\begin{array}{c} E_{\rm LIV}^{(2)} \\ 10^{23} {\rm eV} \end{array}$
eHWC J1825-134	244	1.55	1.75	7.19	295	0.70	1.39	0.58
$ m eHWC~J1907{+}063$	218	2.37	2.2	10.1	462	0.99	0.99	0.47
$ m eHWC~J0534{+}220~(Crab)$	152	2	4.52	29.7	1960	4.01	0.34	0.23
eHWC J2019+368	120	1.8	7.25	60.4	5040	10.1	0.17	0.14
Combined	285	-	1.29	4.51	158	-	2.22	0.8
Crab (HEGRA) 2017 [12]	~ 56	-	-	667	127551	-	.015	.028
Tevatron 2016 [13]	0.442	-	6×10^5	-	-	-	-	-
Crab (HEGRA) 2013 [27]	56	-	40	-	-	-	-	-
RX J1713.7–3946 (HESS) 2008 [15]	30	-	180	-	-	-	-	-
Crab (Themistocle) 1997 [14]	20	-	300	-	-	-	-	-
GRB09510 (<i>Fermi</i> -LAT) 2013 $v > c$ [16]	-	-	-	746	123456790	-	0.0134	0.0009
GRB09510 (<i>Fermi</i> -LAT) 2013 $v < c$ [16]	-	-	-	1075	59171598	-	0.0093	0.0013
Crab (HEGRA) 2019 [17]	75	2	-	-	-	59	-	-

LIV limits

- I. Introduction
- II. LIV-signatures for Astroparticle tests
 - i. Threshold shifts
 - ii. Photon Decay
 - iii. Photon Spliting
 - iv. Energy-dependent time delay
- III. Limits: astrophysical photons

- Phenomenology
- Experiment
- Future

Searching LIV signatures with SGSO

SOUTHERN GAMMA-RAY SURVEY OBSERVATORY

SGSO-White Paper ArXiv: 1902.08429

SOUTHERN GAMMA-RAY SURVEY OBSERVATORY

humbertomh@ifsc.usp.br

SGSO-White Paper ArXiv: 1902.08429

SOUTHERN GAMMA-RAY SURVEY OBSERVATORY

humbertomh@ifsc.usp.br

SGSO-White Paper ArXiv: 1902.08429

Searching LIV signatures with SGSO

SOUTHERN GAMMA-RAY SURVEY OBSERVATORY

Fig. 1

LIV energy scale limits from superluminal searches including a potential reference of SGSO by measuring RXJ1713.7-3946 photons at **80 TeV** and **100 TeV** and the absence of photon decay into electron-positron pairs.

humbertomh@ifsc.usp.br

SGSO-White Paper ArXiv: 1902.08429

- I. Introduction
- II. LIV-signatures for Astroparticle tests
 - i. Threshold shifts
 - ii. Photon Decay
 - iii. Photon Spliting
 - iv. Energy-dependent time delay
- III. Limits: astrophysical photons

Phenomenology

- Experiment
- Future

Photon splitting

$$\begin{split} \mathcal{L} &= -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} - \frac{1}{2M_{LV}^2} F_{ij} \Delta^2 F^{ij} \\ & E_{\gamma}^2 = k_{\gamma}^2 + \frac{k_{\gamma}^4}{M_{LV}^2} \quad \textbf{n=2} \end{split}$$

$$\Gamma_{\gamma \to 3\gamma} = 5 \times 10^{-14} \frac{E_{\gamma}^{19}}{m_e^{8} E_{LIV}^{(2) \ 10}},$$

it has no threshold!

It becomes significant when photons propagate through cosmological distances -> cutoff

If you observe VHE gamma-rays, the LIV process is restricted!!

- I. Introduction
- II. LIV-signatures for Astroparticle tests
 - i. Threshold shifts
 - ii. Photon Decay
 - iii. Photon Spliting
 - iv. Energy-dependent time delay
- III. Limits: astrophysical photons

- Phenomenology
- **Experiment**
- Future

LIV hard cutoff

$$L \Gamma = 1$$

$$E_{LIV}^{(2)} > 3.33 \times 10^{19} \mathrm{eV} \left(\frac{L}{\mathrm{kpc}}\right)^{0.1} \left(\frac{E_{\gamma}}{\mathrm{TeV}}\right)^{1.9}$$

Source	$E_{\rm c}$ TeV	${ m L}{ m kpc}$	$\begin{array}{c} {\rm E}_{{\rm LIV}\ (3\gamma)}^{(2)} \\ 10^{23} {\rm eV} \end{array}$
J1825-134	244	1.55	12
J1907+063	218	2.37	10.1
J0534+220	152	2	4.99
J2019+368	120	1.8	3.15
Combined	285	-	-

LIV limits

Pair production threshold shifts

Energydependent time delay

Photon splitting

Photon decay

Energydependent time delay

I. Introduction

II. LIV-signatures for Astroparticle tests

- i. Threshold shifts
- ii. Photon Decay
- iii. Photon Spliting
- iv. Energy-dependent time delay
- III. Limits: astrophysical photons

Phenomenology

- Experiment
- Future

Energy-dependent time delay

Observation: Difference in arrival time

Constant speed of light

Photons emitted simultaneously will arrive simultaneously

Energy dependent speed of light

The velocity of photons and therefore their travel time could depend on their energy: Photons emitted simultaneously will arrive at different times

Lukas Nellen et al.

Energy-dependent time delay

$$\Delta t = \frac{1+n}{2H_0} \frac{\Delta E^n}{\left(E_{\text{LIV}}^{(n)}\right)^n} \int_0^z \frac{(1+z)^n dz}{h(z)}$$

I. Introduction

- II. LIV-signatures for Astroparticle tests
 - i. Threshold shifts
 - ii. Photon Decay
 - iii. Energy-dependent time delay
- III. Limits: astrophysical photons

- Phenomenology
- Experiment
- Future

Energy-dependent time delay

	$E_{\rm em}[{\rm GeV}]$	$E_{\rm obs}[{\rm GeV}]$	$E^*[\text{GeV}]$	$\Delta t \ [s]$	z	GRB
1	40.1	14.2	25.4	4.40	1.82	090902B
2	43.5	15.4	27.6	35.84	1.82	090902B
3	51.1	18.1	32.4	16.40	1.82	090902B
4	56.9	29.9	26.9	0.86	0.90	090510
5	60.5	19.5	40.0	20.51	2.11	090926A
6	66.5	12.4	47.1	10.56	4.35	080916C
7	70.6	29.8	40.7	33.08	1.37	100414A
8	103.3	77.1	25.2	18.10	0.34	130427A
9	112.5	39.9	71.5	71.98	1.82	090902B
10	112.6	51.9	60.7	62.59	1.17	160509A
11	146.7	27.4	104.1	34.53	4.35	080916C
12*	33.6	11.9	21.3	1.90	1.82	090902B
13*	35.8	12.7	22.8	32.61	1.82	090902B

Nat. Astron. 1, 0139 (2017) G. Amelino-Camelia et al.

Do they have a LIV behavior?

I. Introduction

- II. LIV-signatures for Astroparticle tests
 - i. Threshold shifts
 - ii. Photon Decay
 - iii. Energy-dependent time delay
- III. Limits: astrophysical photons

- Phenomenology
- Experiment
- Future

Energy-dependent time delay

Source	Experiment	Limit on $E_{\rm QG}^{(1)}$	Limit on $E_{\rm QG}^{(2)}$	Distance	Δt	$E_{\rm max}$	Ref.
HAWC Pulsar ref.	HAWC	10 ¹⁷ GeV	9 · 10 ⁹ GeV	2kpc	1 ms	500GeV	
HAWC GRB ref.	HAWC	4.9 · 10 ¹⁹ GeV	1.1 · 10 ¹¹ GeV	z = 1	1 s	100GeV	

The potential of the HAWC observatory, based on the reference scenarios

Lukas Nellen et al. HAWC- ICRC'15

I. Introduction

- II. LIV-signatures for Astroparticle tests
 - i. Threshold shifts
 - ii. Photon Decay
 - iii. Energy-dependent time delay

III. Limits: astrophysical photons

- Phenomenology
- Experiment
- Future

LIV limits: Meeting DRC 2019

- * Astroparticle physics has recently reached a new status of precision due to the construction of new observatories, operating innovative technologies and the detection of large numbers of events and sources.
 - ➡ <u>The precise measurements of cosmic and gamma rays can be used as test</u> <u>for fundamental physics, such as the Lorentz invariance violation.</u>
- I have presented different types of astrophysical LIV signatures through the generic modification to particle dispersion relation in the photon sector, such as pair production threshold shifts, energy-dependent time delay, photon splitting, and photon decay.
 - ➡ There is an active and dynamic field in astroparticle physics looking for LIV signatures.
 - * There are studies in progress to study the potential to test / constrain LIV signatures in astroparticle physics Experiments: HAWC, Auger, Magic, Veritas, HESS, SGSO, CTA...

Thanks!