# Multi-TeV flarings: an evidence of the photohadronic process

#### Carlos Eduardo López Fortín<sup>1</sup>

In collaboration with: Dr. Sarira Sahu<sup>1</sup> & Dr. Shigehiro Nagataki<sup>2</sup>

<sup>1</sup>Institute of Nuclear Sciences UNAM <sup>2</sup>Astrophysical Big Bang Laboratory, RIKEN



APJ Letters 884,1 L17 (2019)

## Presentation program

Multi-TeV observations in the universe

Blazars as gamma-ray sources

Photohadronic model

Description of HBL VHE spectra

Indirect determination of redshift

Future perspectives

### **Cosmic Ray Observatories**



Very Energetic Radiation Imaging Telescope (VERITAS) Mouth Hopkins, Arizona, USA

#### IceCube Neutrino Observatory

Amundsen-Scott South Pole Station



## **Cosmic Ray Observatories**



#### Major Atmospheric Gamma Imaging Cherenkov Telescopes (MAGIC) La Palma, Spain



High Altitude Water Cherenkov Experiment (HAWC) Sierra Negra, Puebla, Mexico

### Active Galactic Nuclei

Compact regions at the center of a galaxy with very high luminosity

Non-stellar radiation due to matter accretion in central supermassive black hole



#### Active Galactic Nuclei



## Types of AGNs

#### Active Galactic Nuclei

(A few % of all galaxies)

.



## Spectral energy distribution (SED)



#### VHE Spectrum of Mrk 501 (VERITAS Colab, 2016)



#### **Blazar clasification**



#### Particle acceleration mechanisms?



## Extragalactic background light (EBL)



## Extragalactic background light (EBL)



Emitting region is a blob with comoving radius  $R'_b$  moving with velocity  $\beta$  with a bulk Lorentz factor  $\Gamma$  and seen at an angle  $\theta_{ob}$ .

Isotropic electron population and randomly oriented B'. The electrons and Fermi-accelerated protons follow a **power-law spectrum**.

Limited electron acceleration, UHE hadronic acceleration possible

Flaring occurs within a compact volume  $R'_f$  inside the blob.

The internal and external jet move with almost the same  $\varGamma$  as the blob.

#### **Fermi-accelerated protons**

$$\frac{dN}{dE_p} \propto E_p^{-\alpha} , \ \alpha \ge 2$$



#### Photohadronic scenario

$$p + \gamma \to \Delta^+ \to \begin{cases} p \, \pi^0, & \text{fraction } 2/3 \\ n \, \pi^+, & \text{fraction } 1/3 \end{cases}$$

$$\sigma_{\Delta} \sim 5 \times 10^{-28} \, \mathrm{cm}^2$$
  
Gamma-rays Neutrinos  
 $\pi^0 \rightarrow \gamma\gamma$   $\pi^+ \rightarrow e^+ \nu_e \nu_\mu \bar{\nu}_\mu$ 

Double jet structure -> no need for super-Eddington power

(inner photon density)  $n_{\gamma,f} > n_{\gamma}$  (outer photon density)

## Minimum kinematical condition

$$E'_p \epsilon'_{\gamma} = \frac{(m_{\Delta}^2 - m_p^2)}{2(1 - \beta_p \cos \theta)} \simeq 0.32 \,\mathrm{GeV}^2$$

For high energy protons, we assume  $\beta_p \sim 1$ . We average collision of all directions as  $(1 - \cos\theta) \sim 1$ .

In the observer frame,

$$E_p \epsilon_{\gamma} \simeq 0.32 \ \frac{\Gamma \mathcal{D}}{(1+z)^2} \ \mathrm{GeV}^2$$

#### where,

$$\epsilon_{\gamma} = \frac{\mathcal{D}\epsilon_{\gamma}'}{(1+z)} \qquad E_p = \frac{\Gamma E_p'}{(1+z)}$$

Each pion carries ~ 0.2 of the proton energy, and pions decay into two  $\gamma$ -rays. Therefore,

$$E_{\gamma} = \frac{1}{10} \frac{\mathcal{D}}{(1+z)} E'_p = \frac{\mathcal{D}}{10\,\Gamma} E_p$$

The matching condition between the  $\pi 0$ -decay photon energy  $E_{\gamma}$  and the target photon energy  $\epsilon_{\gamma}$  becomes,

$$E_{\gamma}\epsilon_{\gamma} \simeq 0.032 \ \frac{\mathcal{D}\Gamma}{(1+z)^2} \ \mathrm{GeV}^2$$

The VHE  $\gamma$ -ray flux is proportional to the background seed photon density  $n'_{\gamma}$  and the proton flux  $F_p = E_p^2 (dN/dE_p)$  $F_{\gamma} = E_{\gamma}^2 \frac{dN}{dE_{\gamma}} \propto E_p^2 \frac{dN}{dE_p} n'_{\gamma,f}$ 

To constrain the seed photon density, we compare the dynamical time scale  $t'_d = R'_f$  with the  $p\gamma$  interaction time scale  $t'_{p\gamma} = \left(n'_{\gamma,f}\sigma_{\Delta}K_{p\gamma}\right)^{-1}$ .

The optical depth of the  $n\gamma$  process is,  $au_{p\gamma} = n'_{\gamma,f}\sigma_{\Delta}R'_{f}$ 

For moderate efficiency, we have  $t'_{p\gamma} > t'_d$  and thus  $\tau_{p\gamma} < 2$ 

Photon density is also limited by the Eddington luminosity  $n'_{\gamma,f} \ll \frac{L_{Edd}}{8\pi R'_f^2 \epsilon'_{\gamma}}$ 

For the outer jet, it is well known that,

$$n_{\gamma}'(\epsilon_{\gamma}) = \eta \frac{L_{\gamma,SSC}(1+z)}{\mathcal{D}^{2+\kappa} 4\pi R_{b}'^{2} \epsilon_{\gamma}}$$

where the SSC photon luminosity is,

$$L_{\gamma,SSC} = \frac{4\pi d_L^2 \Phi_{SSC}(\epsilon_{\gamma})}{(1+z)^2}$$

Using the kinematical condition, we can express the ratio,

$$\frac{n_{\gamma}'(\epsilon_{\gamma_1})}{n_{\gamma}'(\epsilon_{\gamma_2})} = \frac{\Phi_{SSC}(\epsilon_{\gamma_1})}{\Phi_{SSC}(\epsilon_{\gamma_2})} \frac{E_{\gamma_1}}{E_{\gamma_2}}$$

Scaling behavior

$$\frac{n_{\gamma,f}'(\epsilon_{\gamma_1})}{n_{\gamma,f}'(\epsilon_{\gamma_2})} \simeq \frac{n_{\gamma}'(\epsilon_{\gamma_1})}{n_{\gamma}'(\epsilon_{\gamma_2})}$$

Due to the adiabatic expansion of the inner jet, the photon density will decrease when it crosses into the outer region

To recall, the observed VHE flux is,

$$F_{\gamma} = E_{\gamma}^2 \frac{dN}{dE_{\gamma}} \propto E_p^2 \frac{dN}{dE_p} n_{\gamma,f}'$$

The observed flux taking into account EBL effect,

$$F_{\gamma}(E_{\gamma}) = F_{int}(E_{\gamma})e^{-\tau_{\gamma\gamma}(E_{\gamma},z)}$$

Putting everything together,

$$F(E_{\gamma}) = A_{\gamma} \Phi_{SSC}(\epsilon_{\gamma}) \left(\frac{E_{\gamma}}{TeV}\right)^{-\alpha+3} e^{-\tau_{\gamma\gamma}(E_{\gamma},z)}$$

where the proportionality constant is,

$$A_{\gamma} = \left(\frac{F(E_{\gamma_2})}{\Phi_{SSC}(\epsilon_{\gamma_2})}\right) \left(\frac{TeV}{E_{\gamma_2}}\right)^{-\alpha+3} e^{\tau_{\gamma\gamma}(E_{\gamma_2},z)}$$

and,

 $\alpha$ : proton spectral index ( $\alpha \geq 2$ )

For HBLs and extreme HBLs, it has been shown that the SSC flux falls on the tail region and follows a simple power law,

$$\Phi_{SSC}(\epsilon_{\gamma}) = \Phi_0 E_{\gamma}^{-\beta}$$

 $\begin{array}{ll} \beta\colon {\rm seed} & {\rm photon} \\ {\rm spectral \ index} \\ (\beta\leq 1) \end{array}$ 



Therefore for the VHE spectra of HBL, we have the general expression in terms of a single parameter,

$$F_{\gamma,obs}(E_{\gamma}) = F_{\gamma,int}(E_{\gamma}) e^{-\tau_{\gamma\gamma}(E_{\gamma},z)}$$

where the intrinsic flux is given by,  $E = \left( \begin{array}{c} E_{\gamma} \end{array} \right)^{-\delta+3} e^{-\tau_{\gamma\gamma}} \left( \begin{array}{c} E_{\gamma\gamma} \end{array} \right)^{-\delta+3} e^{-\tau_{\gamma\gamma}} \left( \begin{array}( \begin{array}{c} E_{\gamma\gamma} \end{array} \right)^{-\delta+3} e^{-\tau_{\gamma\gamma}} \left( \left( \begin{array}( \begin{array}{c} E_{\gamma\gamma} \end{array} \right)^{-\delta+3} e^{-\tau_{\gamma$ 

$$F_{\gamma,int}(E_{\gamma}) = F_0\left(\frac{L_{\gamma}}{TeV}\right) \qquad e^{-\tau_{\gamma\gamma}(E_{\gamma},z)}$$

and,

 $F_0$ : Normalisation  $\delta = \delta^{onstant}$  photohadronic spectral index We fitted the observed VHE spectra of 42 emission epochs of 23 HBLs of different redshifts very well with the free parameter  $\delta$  is in the range  $2.5 \leq \delta \leq 3.0$ .

We have roughly classified:

- Very high state:  $\delta \in [2.5, 2.6]$
- High state:  $\delta \in [2.6, 3.0[$
- Low state:  $\delta = 3.0$

EBL template: Francheschini et al (2008).

## VHE Spectrum (low redshift)



#### 1ES 0229+200 (z=0.1396)

It was observed by VERITAS telescopes during a long-term observation over three seasons between October 2009 and January 2013, for a total of 54.3 hours

Energy range:

 $0.29 \; TeV \leq E_{\gamma} \leq 7.6 \; TeV$ 

## VHE Spectrum (low redshift)

#### 1ES 0347-121 (z=0.188)

The HESS telescopes observed this blazar between August and December 2006 for a total of 25.4 hours.

Energy range:

```
0.25 \ TeV \le E_{\gamma} \le 3.0 \ TeV
```



## VHE Spectrum (low redshift)



#### 1ES 0806+524: (z=0.138)

A multiwavelength campaign was performed by MAGIC telescopes from January to March 2011 for 13 nights for about 24 hours and, on February 24, observed a flaring event for 3 hours.

Energy range:

 $0.17 \ TeV \le E_{\gamma} \le 0.93 \ TeV$ 

## VHE Spectrum (medium redshift)

#### 1ES 1011+496 (z=0.212)

It was observed by the MAGIC telescopes during a aring event between February and March 2014, for a total of 17 nights.

Energy range:

 $0.1 \ TeV \le E_{\gamma} \le 3 \ TeV$ 



## VHE Spectrum (high redshift)



#### PG 1553+113 (z=0.5)

A multi-TeV faring event was observed from PG 1553+113 during the nights of April 26 and 27 of 2012 by the HESS telescopes for a total of 3.5 hours.

Energy range:

 $0.25 \ TeV \le E_{\gamma} \le 0.6 \} \ TeV$ 

## Predicting unknown redshifts

#### HESS J1943+213 (z=?)

In VHE, it was observed by VERITAS telescopes from 27 May to 2 July 2014 and from 20 April to 9 November 2015, for a total exposure time of 37.2 hours.

Previously constrained to,

0.03 < z < 0.45

by applying the photohadronic model we found more stringent bounds for the redshift,

 $0.14 \le z \le 0.19$ 



## Predicting unknown redshifts



#### PKS 1440-389 (z=?)

This HBL was observed by HESS telescopes between 29 February to 27 May 2012 for a total of ~12 hours.

Previously constrained to,

0.14 < z < 0.2.2

by applying the photohadronic model we found more stringent bounds for the redshift,

 $0.14 \leq z \leq 0.24$ 

## Results

|                              | Name                  | Redshift(z)                    | Period                   | $F_{0,11}$ | δ    | State     |
|------------------------------|-----------------------|--------------------------------|--------------------------|------------|------|-----------|
|                              | Mrk 421               | 0.031                          | 2004                     | 51.3       | 2.95 | High      |
|                              |                       |                                | 22 Apr 2006              | 5.2        | 2.95 | High      |
| Only model to                |                       |                                | 24 Apr 2006              | 10.7       | 3.0  | Low       |
|                              |                       |                                | 25 Apr 2006              | 6.9        | 2.95 | High      |
| appointantly departing       |                       |                                | 26 Apr 2006              | 5.2        | 3.0  | Low       |
| consistently describe        |                       |                                | 27 Apr 2006              | 16         | 2.95 | High      |
|                              |                       |                                | 28 Apr 2006              | 5.0        | 3.0  | Low       |
| $up \ io \ 40 + v \Box \Box$ |                       |                                | 29 Apr 2006              | 4.9        | 3.0  | Low       |
| anastra of LIDI a            |                       |                                | 30 Apr 2006              | 13.5       | 2.5  | Very High |
| spectra of HBLS.             |                       |                                | 16 Feb 2010              | 12         | 3.0  | Low       |
| •                            |                       |                                | 17 Feb 2010              | 1.5        | 3.0  | Low       |
|                              |                       |                                | 10 Mar 2010              | 21         | 2.6  | Very High |
|                              |                       |                                | 10 Mar 2010              | 16.5       | 3.0  | Low       |
|                              | 161-501               | 0.024                          | 28 Dec 2010              | 6.7        | 3.00 | Low       |
|                              | Mrk 501               | 0.034                          | 22 - 27 May 2012         | 0.3        | 2.9  | High      |
|                              | 155 2244 514          | 0.044                          | 23 - 24 Jun 2014         | 28         | 2.93 | High      |
|                              | 1ES 2344+314          | 0.044                          | 4 Oct 2007 - 11 Jan 2008 | 0.8        | 3.0  | Low       |
|                              | 1ES 1939+030          | 0.048                          | Nov 2007 Oct 2012        | 12         | 3.0  | Low       |
|                              |                       |                                | 21 27 May 2006           | 2.2        | 3.0  | Low       |
|                              |                       |                                | 21-27 May 2000           | 80         | 2.0  | High      |
|                              | 1FS 1727+502          | 0.055                          | 1.7 May 2012             | 0.0        | 2.9  | Low       |
|                              | PKS 1440-389          | 0.055<br>0.14< $\gamma < 0.24$ | 29 Feb - 27 May 2013     | 0.9        | 3.0  | Low       |
| <b>D</b> hatahadrania        | 1FS 1312-423          | 0.105                          | Apr 2004 - Jul 2010      | 0.20       | 3.0  | Low       |
| FIIOLOHAUIOHIC               | B32247+381            | 0.119                          | 30 Sep - 30 Oct 2010     | 0.17       | 3.0  | Low       |
| anastral index can           | RGB J0710+591         | 0.125                          | Dec 2008 - Mar 2009      | 0.5        | 2.9  | High      |
| spectral index can           | 1ES 1215+303          | 0.131                          | Jan - Feb 2011           | 90         | 3.0  | Low       |
| prodict state and            | 1RXS J101015.9-311909 | 0.14                           | Aug 2008 - Jan 2011      | 0.2        | 2.8  | High      |
| predict state and            | 1ES 0229+200          | 0.14                           | 2005 - 2006              | 0.4        | 2.6  | Very High |
| nhoton donaity (ainao        | H 2356-309            | 0.165                          | Jun - Dec 2004           | 0.3        | 2.9  | High      |
| photon density (since        | 1ES 1218+304          | 0.182                          | Dec 2008 - 2013          | 1.5        | 2.9  | High      |
| $\beta - \delta$ $\alpha$    | 1ES 1101+232          | 0.186                          | 2004 - 2005              | 0.60       | 2.75 | High      |
| $p = o - \alpha$             | 1ES 1011+496          | 0.212                          | 6 Feb - 7 Mar 2014       | 8.2        | 3.0  | Low       |
|                              | 1ES 0414+009          | 0.287                          | Aug 2008 - Feb 2011      | 0.70       | 2.9  | High      |
|                              | RGB J0152+017         | 0.80                           | 30 Oct - 14 Nov 2007     | 0.3        | 3.0  | Low       |
|                              | RGB J2243+203         | $0.75 \le z \le 1.1$           | 21 - 24 Dec 2014         | 0.28       | 2.6  | Very High |

AGNs represent important sources to probe for the origin of cosmic rays through multi-TeV gamma-ray observations.

Leptonic, hadronic, and hybrid models allow a phenomenological description of VHE spectra but are limited to multiple parametrizations and other physical constraints (i.e. efficiency, B)

Photohadronic scenario provides a simple yet consistent explanation for VHE  $\gamma$  production through  $p\gamma$  interaction via intermediary  $\Delta^+$ 

Double jet scenario provides necessary seed photon density to



Photohadronic model only requires the adjustment of one free parameter (photohadronic spectral index):

- Predict emission state (low, high, very high)
- Predict photon density (assuming known  $\alpha$ )
- Constraint HBL redshift from VHE spectrum
- Constraint EBL model from VHE spectrum

Future work:

- Extension to IBLs and LBLs (unified model?)
- Description of IceCube neutrino events

## Thank you for your αττention