

Charm jet and correlation measurements with ALICE in pp and p-Pb collisions at the LHC

Antonio Palasciano

University and INFN Bari

10th International Workshop on Charm Physics

The study of Heavy-Flavour (HF) quarks in small system provides the reference for the understanding of their interaction with the Quark Gluon Plasma (QGP).

In pp collisions, they are useful to:

- test pQCD calculation;
- constrain and validate fragmentation and hadronization models;
- provide a reference for larger systems, such as p-Pb and Pb-Pb.

In p-Pb:

• their production and kinematic properties can be modified by cold nuclear matter (CNM) effects like shadowing or energy loss-mechanisms.

Differential studies as HF-jets and HF-correlations can give a more direct access to the parton dynamics, providing more information than single particle studies.

D^0 - and $Λ$ _c- tagged jets

Analysis strategy: charm-tagged jets

• Topological reconstruction of the charm candidates

 $D^0 \rightarrow K^- \pi^+ + \text{conj.}$ (B.R. 3.89%) $\Lambda_{\rm C}^+ \to {\rm pK}_{\rm S}^0$ + conj. (B.R. 1.59%)

- For every candidate, the jet-finder algorithm on charged particles is run (Fastjet, anti-kT).
- Extraction of the jet raw yield through Invariant Mass analysis \rightarrow Sideband subtraction performed
- Corrections for Jet Efficiency and Beauty Feed-Down
- 2D unfolding for detector effects in order to simultaneously correct the measured $p_{\text{T, ch jet}}$ and distributions to particle level.

D⁰-tagged jets production cross-section

A similar dependence of the D⁰-tagged jet cross-section is observed with increasing $p_{_{\rm T,\,ch\,jet}}$ between the collision energies

- POWHEG hvq CT10NLO + PYTHIA6 well reproduces the data points, with increasing compatibility with $p_{\text{T, ch jet}}$
- POWHEG dijet + PYTHIA 6 data above points and different trend wrt POWHEG hvq CT10NLO + PYTHIA6

D⁰-tagged jets: parallel momentum fraction

- A softer fragmentation wrt model is observed for small $z_{\vert\vert}$ at small $p_{\rm T}^{\vert\vert}$ $_{_{\rm T}}^{\rm D}$ and in the low- $p_{_{\rm T,~ch~jet}}$ range.
- At large $p_{T, ch jet}$ POWHEG hvq CT10NLO + PYTHIA6 provides results compatible within the syst. uncertainties.

Λ_{C} -tagged jets: parallel momentum fraction

$$
z_{||}^{\text{ch}} = \frac{\vec{p}_{\text{ch jet}} \cdot \vec{p}_{\text{Ac}}}{\vec{p}_{\text{ch jet}} \cdot \vec{p}_{\text{ch jet}}}
$$

First measurements of $z_{\parallel}^{\parallel}$ ch probability density in Λ_{C} -tagged jets

 \rightarrow large statistical uncertainties measured.

Comparisons to models:

- POWHEG hvq CT10NLO + PYTHIA6 and PYTHIA8 (Monash) :
	- \rightarrow softer fragmentation observed in data
- PYTHIA8 SoftQCD
	- \rightarrow predictions show a better agreenment with data

• Hint of a trend in the ratio Λ_{C} / D^0 as function of the radial distance

 \rightarrow Possible Λ_c less collimated with the direction of the hf-jet than the D⁰

D⁰-tagged jets in p-Pb at $\sqrt{s_{min}}$ = 5.02 TeV **NN**

- A good agreement between data and POWHEG + PYTHIA6 predictions in p-Pb.
- The differential pp cross section (scaled by $A_{\rm ph}$ = 208) is compatible within statistical uncertainties with the p-Pb data.
- The nuclear modification factor $R_{\text{pPb}} \approx 1$ over the p_{T} ch,jet interval.

CHARM 2020 – 03/06/21 and 2000 Matoric Palasciano 8 antonio Palasciano 8 antonio 8 antonio 8 antonio 8 antonio

ALICE

HF-electron jets in p-Pb at \sqrt{s} NN $= 5.02 \text{ TeV}$

Jets containing electrons from a HF-hadron semileptonic decay are measured both in pp and p-Pb.

In p-Pb, modifications to the jet-shape or spectrum, are evidences of final states effects (QGP):

- *jet broadening*: dependence on R (jet cone size);
- *jet suppression*: modification to the p_T^{\prime} jet spectrum .

HF-electron jets in p-Pb at \sqrt{s} NN $= 5.02 \text{ TeV}$

Jets containing electrons from a HF-hadron semileptonic decay are measured both in pp and p-Pb.

In p-Pb, modifications to the jet-shape or spectrum, are evidences of final states effects (QGP):

Final state particles are studied by means of their angular distribution with respect to the direction of the tagged D meson.

Sensitive to the production mechanisms Pair Creation (LO): c quarks are produced back-to-back - "Near Side" peak at $\Delta \varphi = 0$: populated by particles from the showering of the D-meson parent c quark; $-$ "Away side" peak at $\Delta \varphi = \pi$: "*recoiling jet*" particles; Hard gluon radiation (NLO): smearing of both peaks; Gluon splitting (NLO): c - \bar{c} produced closely, so showering products are collimated the direction of the tagged D meson Flavour excitation (NLO): flat contribution with $\Delta\varphi$.

- Differential description of the peaks shape with $p_{\rm T}^{\rm T}$ assoc Characterization of the charm fragmentation products.

In p-Pb, find modifications to the correlation shape induced by CNM effects.

1) Evaluation of the 2D Correlation Distributions ($\Delta\varphi$, $\Delta\eta$):

• Topological reconstruction of D meson candidates

 $D^{*+} \to D^0 \pi^+ \to K^- \pi^+ \pi^+ + \text{conj.}$ (B.R. 2.67%) $D^+ \rightarrow K^- \pi^+ \pi^ (B.R. 9.38\%)$ $D^0 \rightarrow K^- \pi$ $(B.R. 3.89\%)$

- Identification of associated (charged) particles;
- Sideband subtraction and event-mixing technique;
- Corrections for efficiency, acceptance;
- Integration over $|\Delta \eta| < 1$;
- Corrections for contamination and feed-down.

2) Fit procedure:

• Generalized Gaussian (NS) + Gaussian (AS) + constant term (Baseline)

Preliminary results are also available for pp collision at \sqrt{s} = 13 TeV

CHARM 2020 – 03/06/21 Antonio Palasciano 11

1) Evaluation of the 2D Correlation Distributions ($\Delta\varphi$, $\Delta\eta$):

• Topological reconstruction of D meson candidates

 $D^{*+} \to D^0 \pi^+ \to K^- \pi^+ \pi^+ + \text{conj.}$ (B.R. 2.67%) $D^+ \rightarrow K^- \pi^+ \pi^ (B.R. 9.38\%)$ $D^0 \rightarrow K^- \pi$ $(B.R. 3.89\%)$

- Identification of associated (charged) particles;
- Sideband subtraction and event-mixing technique;
- Corrections for efficiency, acceptance;
- Integration over $|\Delta \eta| < 1$;
- Corrections for contamination and feed-down.

2) Fit procedure:

• Generalized Gaussian (NS) + Gaussian (AS) + constant term (Baseline)

Consistent values of the fit observables in pp and p-Pb collisions are observed in all kinematic ranges.

 \rightarrow no significant impact from cold-nuclear-matter effects on the c fragmentation arises with current statistics.

p-Pb at \sqrt{s} = 5.02 TeV

Azimuthal correlation distributions in p-Pb are studied also as function of the collision centrality to better address possible modifications to the fragmentation of the c quark.

• p-Pb distribution shapes are compatible within statistical uncertainties. The fit observables do not show a dependence on the collision centrality.

HFe-charged particles azimuthal correlation distributions

 $\frac{1}{2}$ 0.14
 $\frac{6}{2}$ 0.12

 $\sum_{6}^{8} 0.08$

-0.0

ALI-PREL-489120

0.06

 0.1

HF-electron sources are:

semi-leptonic decays of heavy-flavour hadrons.

Main background contributions come from:

- Dalitz decays of light neutral mesons,
- photon conversion in the detector material.

The azimuthal correlation distribution **Active Contract Activity of the Contract Activity of the NEW** undergoes a correction procedure similar to that of the D meson distribution.

Fitting procedure:

Two generalized gaussian are considered for the $\frac{1}{3}$ \geq 0.02.
peaks. peaks.

 $4 < p₊^{assoc} < 5 GeV/c$

corr. sys. unc. \pm 1.4%

 $\Delta\varphi$ (rad)

Stat. err. on baseline Uncorr. sys. unc

> 2 З

 0.3

 $3 < p_{\perp}^{\text{assoc}} < 4 \text{ GeV}/c$

corr. sys. unc. \pm 1.4% :

З

 $\Delta\varphi$ (rad)

 (rad)

 $\frac{90.25}{20.2}$

증 0.15

 $= 0.05$

 $0.2[†]$

 -1

 $2 < p_{-}^{\text{assoc}} < 3 \text{ GeV}/c$

- PYTHIA8, Monash

corr. svs. unc. \pm 1.4%

HFe-charged particles azimuthal correlation distributions

HF-electron sources are:

semi-leptonic decays of heavy-flavour hadrons.

Main background contributions come from:

- Dalitz decays of light neutral mesons,
- photon conversion in the detector material.

The azimuthal correlation distribution undergoes a correction procedure similar to that of the D meson distribution.

Fitting procedure:

Two generalized Gaussian are considered for the peaks:

- NS yield is very well reproduced by the PYTHIA8;
- both the widths are underestimated by the PYTHIA8 predictions.

Azimuthal correlations between heavy-flavour decay electrons with charged particles are computed in two multiplicity classes considering p-Pb collisions:

- HM (high multiplicity, 0-20%)
- LM (low multiplicity, 60-100%)

The jet-induced correlations peaks are removed by subtracting the LM from the HM distribution and fitting the resulting distribution with a Fourier decomposition.

Azimuthal Anysotropy is found:

 $v_{2\Lambda}$ = 0.0040 ± 0.0007 (stat)

Azimuthal correlations between heavy-flavour decay electrons with charged particles are computed in two multiplicity classes considering p-Pb collisions:

- HM (high multiplicity, 0-20%)
- LM (low multiplicity, 60-100%)

ALI-PUB-310817
From factorization approach:

HFe v_2 is larger than zero

(about 5 σ significance in 1.5 < $p_{\rm T}^e$ $\frac{e}{r}$ < 4 GeV/c)

 \rightarrow Comparable with charged particles and muons

Can this be interpreted as a final state effects ?

Summary

- HF tagged jets:
	- \checkmark theoretical predictions successfully describe the experimental cross-section;

;

- \checkmark softer fragmentation at low $p_{\text{t, ch jet}}$ is observed by looking at the fragmentation function;
- \checkmark first measurements of the radial displacement;
- \checkmark nuclear modification factor in D-meson tagged jets;
- HFe tagged jets
	- \checkmark final state effects excluded by studying the dependence of the jet shape on the jet-radius.
- D-h azimuthal correlation distribution:
	- \checkmark differential study with $p_{\rm T}^{\checkmark}$ $\frac{\text{d}}{\text{d}}$ and p_{T}^{a} assoc
	- \checkmark comparison between measurements in p-Pb and pp;
	- \checkmark centrality-dependent study;
- HFe charged particle azimuthal correlation distributions
	- \checkmark first measurements in pp at \sqrt{s} =5.02 TeV;
	- \checkmark measurements of positive v_2 in p-Pb collisions at $\sqrt{s_{NN}}$ =5.02 TeV;

Thanks for your attention

D⁰-tagged jets: parallel momentum fraction

 $Z_{\vert\vert}$ ch = ${\vec p}_{\rm ch\, jet} \cdot {\vec p}_{\rm p}$

D⁰-tagged jets: parallel momentum fraction

ALICE

 $Z_{\vert\vert}$ ch = ${\vec p}_{\rm ch\, jet} \cdot {\vec p}_{\rm p}$ ${\vec p}_{\rm ch\, jet}$ ・ ${\vec p}_{\rm ch\, jet}$

D^0 - and Λ_c -tagged jets: Radial Displacement

 $r=\sqrt{\Delta\phi^2+\Delta\eta^2}$

ALICE

Fit procedure (Periodic function)

• Generalized Gaussian (NS) + Gaussian (AS) + constant term (Baseline)

$$
f\left(\Delta\varphi\right)=C+\tfrac{Y_{\rm NS}\ \beta}{2\alpha\Gamma(1/\beta)}\exp\left(-\tfrac{\left(\Delta\varphi\right)^\beta}{\alpha^\beta}\right)+\tfrac{Y_{\rm AS}}{\sqrt{2\pi\sigma^2_{\rm AS}}}\exp\left(-\tfrac{\left(\Delta\varphi-\pi\right)^2}{2\sigma^2_{\rm AS}}\right)
$$

*Y*_{*NS} and Y*_{*AS*} *: yields* (integrals under the curves)</sub> σ_{NS} *and* σ_{AS} *: widths* of the two distributions

 σ_{NS} = α²Γ(3/β)/Γ(1/β)

Example of fit of the D-charged particles azimuthal correlation distributions

Comparisons with MonteCarlo models:

- PYTHIA ($2\rightarrow 2$ matrix at LO), NLO contributions in the showering, Lund string model for the hadronization stage:
	- PYTHIA6, Perugia 2011: first tune considering the data in pp collisions at \sqrt{s} =7 TeV at LHC.
	- PYTHIA8: improved Multi Parton Interactions (MPI) and color reconnection mechanisms (CR);
- \sum • POWHEG (NLO pQCD generator): coupled with PYTHIA for the parton showering and the hadronization:
	- POWHEG LO + PYTHIA6: hard scattering matrix $\frac{5}{36}$ elements computation stopped at LO;
- HERWIG (NLO): showering processes are angularly ordered, cluster hadronization model;
- EPOS3: based on Gribov–Regge theory, hadronization through string fragmentation

[EPJC 80 \(2020\) 979](https://link.springer.com/article/10.1140/epjc/s10052-020-8118-0?wt_mc=Internal.Event.1.SEM.ArticleAuthorIncrementalIssue&utm_source=ArticleAuthorIncrementalIssue&utm_medium=email&utm_content=AA_en_06082018&ArticleAuthorIncrementalIssue_20201025)

CHARM 2020 – 03/06/21 Antonio Palasciano 11

 σ_{Γ}

Comparisons with MonteCarlo models:

- PYTHIA ($2\rightarrow 2$ matrix at LO), NLO contributions in the showering, Lund string model for the hadronization stage:
	- PYTHIA6, Perugia 2011: first tune considering the data in pp collisions at \sqrt{s} =7 TeV at LHC.
	- PYTHIA8: improved Multi Parton Interactions (MPI) and color reconnection mechanisms (CR);
- POWHEG (NLO pQCD generator): coupled with PYTHIA for the parton showering and the hadronization:
	- POWHEG LO + PYTHIA6: hard scattering matrix elements computation stopped at LO;
- HERWIG (NLO): showering processes are angularly ordered, cluster hadronization model;
- EPOS3: based on Gribov–Regge theory, hadronization through string fragmentation

Comparisons with MonteCarlo models:

- PYTHIA ($2\rightarrow 2$ matrix at LO), NLO contributions in the showering, Lund string model for the hadronization stage:
	- PYTHIA6, Perugia 2011: first tune considering the data in pp collisions at \sqrt{s} =7 TeV at LHC.
	- PYTHIA8: improved Multi Parton Interactions (MPI) and color reconnection mechanisms (CR);
- POWHEG (NLO pQCD generator): coupled with PYTHIA for the parton showering and the hadronization:
	- POWHEG LO + PYTHIA6: hard scattering matrix elements computation stopped at LO;
- HERWIG (NLO): showering processes are angularly ordered, cluster hadronization model;
- EPOS3: based on Gribov–Regge theory, hadronization through string fragmentation

